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Main features of the muon spin
polarization behavior
In nanostructured films

A behaviour of a muon spin polarization strongly depend on a behaviour of
a muon itself. Note first of all that a muon can stop both in some interstitial
site of a grain and in an intergrain area. So, we can write a muon spin
polarization in a form of a sum

P(t) = Per(t) + Puc(t), (28)

where P (t) and Py.(¢) are fraction of a polarization in a grain and outside
of it respectively.

For non-diffusion muons in disordered media we have
the well-known formula

P;(t) = pir(t)Pr(0)



where the polarization tensor is determined as
wik(t) = ning + (0ix — ning) cos vb,t + eipmy sinyb,t
Here

‘b, 'sthelocal field at the muon position

n=b,/|b,| -the unitvector and

v =13.5564 kHz/G - gyromagnetic ratio for the muon



Hierarchy of Fields

BB. - an external field to the whole sample (film);

macroscopic fields B and H

and a magnetization M Inside grains.
Averaged fields (B), (H) and a magnetization (M).in a film.

B, = (H;) + 4r N;p, (M), (B) = (H) + 47 (M). (1)
(B), (H) and (M) fields and magnetization in an

Intergrain volume;

a field (B) acts on a muon stopped outside a grain.
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(B) is the “external” field for grains.
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External field is directed perpendicular to the plane  B||z

B,=B=(H,)+4r(M,), (Hy)~0,

(B,) =B, (Bp) =~ 4w {My).
External field is parallel to the plane 13 | ».
(H,) +4n(M,) =0, (H,)=—4n(M,), (H,)~B.
(B,) =4n(M,), (Bp)= B+ 4n(M).
For the every grain  (B;) = H; + dmn;, M,

ﬂ”:ﬂzgﬁl, ﬂlzl—ﬂ"{fﬁil,



External field is directed perpendicular to the plane  B||z

(B,)xB=H,+4rM,, wm H,=B-4nM,.

le — {Bm} — 4?T{i1irpl>? B[Jl — 4?({41{[3[} + ﬂrirpl).
External field is parallel to the plane 13 | ».

H, = —4xM,, H, =~ (By,)= B+ 4r(My).

JI__i)3 — U Bpl =5 + 4??'({111},1} + f'rirpl).

We need to determine M inside grains and <M> inside the film.



For a single-axis ferromagnet
U'a.n = NjETnimy,
Minimization of free-energy potential for a grain

~ 1
F = 5(4??'?1{}; + ﬁﬂ;)ﬂﬂﬂﬁ; — {B)M

For DBz
F(#) = gMz sin® ) + 2w M? cos® (9 — 0) — M B cos(0 — ).

Minimum condition

1
5,{3’11&" sin 20 — 27 M sin 2(9 — #) 4+ Bsin(d — 0) = 0.



Analytical solution in a limit of strong external fields
B> M, o [(B)[>M

Define 9 = o — J.

1 M
0 R iﬁg sin 2.

Inside grains

22 Af2
M, = Mcosd =~ M 1—ﬁ M sin” 24 | .
8 B2

1 _M?

M Msino ~ — -“?F sin 217,

pl —

Respectively

32 M?
(M) =M (1 - ) (My) = 0.




For B.lz, wehave:

| 32 M2
M, = Msiné, (M,))=0, My=Mcoss, (My)=M |1

15 B2
For cubic ferromagnet of easy-axis type

F = —%,SME (m§ +mp +m¢) + 2mn M; My — (B)M.
Direction of the magnetization vector

1 M
0 = E‘BE sin 4.



For the external field B||z
g2 M2
M, = Mcoso =~ M |1 — —ﬁqm 499

1 _M?
My = Msino =~ _ﬁF sin 447,

5% M?

If the external field B-Lz,

M, = —Msiné, (M,)=0, M

pl —

M cosd, (M l)—M(



Local field at a muon

Local field at a muon determines a precession frequency of its spin polar-
ization. A local field at a muon in any grain is determined by the formula
(14, 15]
8
bﬂ =B - ?M + bdip + Beont (18)
where Bon; 1s the field created by conduction electrons, and by, is the mi-
croscopic field of all dipoles inside the Lorentz sphere. A contact field could

always written in the form
B, cont = K1 By, (19)

For cubic crystals is valid a relation K, = ¢;, /K and contact field is reduced
to the well-known isotropic Knight shift.



Microscopic field bgi, inside the Lorentz sphere one can represent in a
form [14, 15])
4
bidip = _?Mi + a;x My (20)
A tensor a;; depends on an interstitial site where a muon stopped. It can
be calculated by the well-known Evald method. Calculations shown (see e.g.
(14, 15]) that for the FCC-lattice (Ni) the tensor is determined as a;, =
d;x47 /3, hence, a microscopic dipole field is equal to zero:

bdip(fcc) = 0. (21)
Thus, for the FCC-lattice the local field at a muon doesn’t depend on a type
of an interstitial site and is equal to
8T

b,(fcc) =B — ?M (22)



Microscopic dipole field for the HCP-lattice (Co) is small too, but has dif-
ferent values for different crystallographically unequivalent interstitial sites:

4
a;x(hep) = ?ﬂ + da;. (23)

If the z-axes is directed along the hexagonal axes components of the tensor
a;; can be written in the form:

dal

T

¢
0ay,,

=dal =6/2, dal,=—0 in an octahedral site,

= da,, = —06, dal, =20 in a tetrahedral site. (24)

We can consider bgip, << M because 0 ~ 0.104. The local field at a muon in
the HCP-lattice can be written in the form:

b’ui(h(}p) =B, — %Mg + da; M. (25)



The more complicated picture is observed in the BCC-lattice (Fe) where
a dipole field have a large value and depend both on a type of an interstitial
site and on a direction of a magnetization vector M. Components of a tensor
a;x(bce) in the main axis are equal to

a' =a" = —-1.165, a” =14.9 in an octahedral site,

al, = af’,y = 5.707, a', =1.152 in a tetrahedral site. (26)

Tr

The local field at a muon in the BCC-lattice can be written in the form:

bﬁi(bﬂﬂ) = B1 — 47TM3 + Qi (bCC)Mk. (27)
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bpl :(] + Iir:]Bpl — ﬂffp[ ~~r ﬂ-ﬂﬂfﬁ,

b = by + b(V).
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T"’J_ — {fe_h}l“bt} ~ E—lmnt{e—lm[ﬂjt}

7

wo = Yubo, w(¥) = v,b(9).

T:)j:l_iﬂ" — E—il:mn +.ﬁfﬁ}te—ﬂﬁiﬁtﬂ

197 . (M 1 [ 4n ?
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Non-diffusion muons
BCC lattice, B||3

Components of the dipolar tensor
A,, = a+0acos2y., ap,=a—d0acos2V¥. a,, = a;, = dasin 29

where

a=(a)+a1)/2, da=(a)—ay)/2, a = a¢, a; = ag.
Components of the local field:

b, =B —4rM, + a,,M, + a,, M, =
1 1. M
=B — 5(4:?? +a, )M + daM cos 29 + Efiﬁtﬁ% sin 44 cos 24,

_ 1 1 M?
by =daM sin 209 — 5(4?? +a, )+ dacos2d E'SF sin 44).



Two 1tems of the local field:

1
bo =B — 2 (47 + aL) M,

1 1 M?
b(9) ~daM cos29 + 5!51’1 E'S cos 29 + da B sin? 24,

Transverse component of a polarization

{ z —m.{ﬂ}t) Iu.-‘nt.

represented by the gaussian exponent

JPJ_ — E—il[u:n—l— Aw )i o~ ffﬁdtz
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Longitudinal polarization is equal approximately to zero

Jp” . ( F‘l —h.;.-{ﬂ}t) —1wplt __ []

For the external field parallel to the plane we have the same
formulas.



In the case of single-axes ferromagnets we have a similar behavior:
1. No oscillations in the longitudinal polarization
2. (Gaussian exponent for the transverse component

of polarization with parameters

hf’“ 8“ 1 ..1.{
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