Seach for Two-Particle Muon Decay to Positron and Goldstone Massless Boson - Familon. Project of Experiment

PNPI (Gatchina) - V.A.Andreev, N.F.Bondarev, V.L.Golovtsov, V.A.Gordeev, Yu.V.Elkin, V.G.Ivochkin, E.M.Karasev, E.N. Komarov, C.V.Kosijanenko, A.G.Krivshich, M.P.Levchenko, Yu.A.Scheglov, G.V.Scherbakov, S.I.Vorobyov, A.A.Zhdanov

JINR (Dubna) - V.G.Grebinnik, K.I.Gritsaj, S.A.Gustov, V.N.Duginov, V.A.Zhukov, T.N.Mamedov, I.V.Mirokhin, V.G.Olshevsky, A.V.Stoykov

ITEP (Moscow) – K.E.Gusev, V.S.Demidov, E.V.Demidova N.A.Khaldeeva, G.I.Saveliev, A.Yu.Sokolov, Yu.P.Shkurenko

IPM (Moscow) – M.Yu.Khlopov

PROJECT SPOKESMAN V.A.GORDEEV

COORDINATOR FROM JINR V.N.DUGINOV

Intensity of charged particles

Intensity of charged particles from channel IX of Dubna phasotron per 1 μ A of the proton beam. W-target. Momentum spred is $\Delta p/p \simeq 5.8\%$

Particle	I	Intensity on area of 80 cm ² , 10 ⁶ 1/s					
momentum	Positively charged			Negatively charged			
MeV/c	e^+	μ^+	**	e-	μ^{-}	π-	
76	32	2.6	13				
95	24	3.6	30	18	1.4	10	
112	16	3.8	46	11	1.2	15	
123	8.0	2.9	50	8.0	0.9	17	
149	4.3	1.2	42	5.0	≤0.7	18	
165	2.8	0.6	35	3.8	≤0.6	17	

Flux density and intensity of surface μ^+ - mesons from channel IX of Dubna phasotron per 1 μ A of the proton beam. Cu-target. $\Delta p/p \simeq 5.8\%$

Momentum	$N_{\mu^{+}}/N_{e^{+}}\%$	Flux density	Intensity on area of
MeV/c		$\times 10^3 1/cm^2 \cdot s \cdot \mu A$	$80 cm^2$, $\times 10^5 1/s \cdot \mu A$
26	1.9	3.8	3.0
28	3.3	6.6	5.3
30	2.7	5.4	4.3
32	0.2	0.4	

For separated beam of 24 MeV/c surface mesons the intensity $\simeq 2 \cdot 10^5 1/s \cdot \mu A$ was attaind with the ratio $N_{\mu^+}/N_{e^+} \approx 1$

			Таблиц	(a 1			×	Табл	лица 2
Распад мюона		$m_{\mu^{\pm}} = 105,6583568(52)$	$\tau_{\mu^{\pm}} = 2,19703(4)$		Распад пиона		$m_{\pi^{\pm}} = 139,57018(35)$	$\tau_{\pi^{\pm}} = 2,6033(5)$)
		MəB	×10 ⁻⁶ cer			·	МэВ	×10 ⁻⁸ cer	•
Моды распада μ^-		Отношение (Γ_j/Γ)	Уровень достов.		Моды распада 7	r+	Отношение (Γ_i/Γ)	Уровень посто	B
$e^-\bar{\nu}_e\nu_\mu$		$\approx 100\%$			$\mu^+\nu_\mu$		99.98770(4)%		
$e^-\bar{\nu}_e\nu_\mu\gamma$		$(1,4\pm0,4)\%$			$e^+\nu_e$		$1.230(4) \times 10^{-4}$		
$e^- \nu_e \nu_\mu e^+ e^-$		$(3,4\pm0,4)\times10^{-5}$.	-		$\mu^+\nu_\mu\gamma$		$2,00(25) \times 10^{-4}$		
моды распа	дасне	сохранением LF (Lepto	on Family) числа		$e^+\nu_{\alpha}\gamma$		$1,61(22) \times 10^{-7}$		
$e \nu_e \nu_\mu$		< 1,2%	90%		c ver		$1,01(20) \times 10^{-8}$	~	
$e \gamma$		$< 1,2 \times 10^{-11}$	90%		ευεπ		$1,025(34) \times 10^{-8}$	-	
		$< 1,0 \times 10^{-12}$. 90%		e ⁺ <i>v</i> _e e ⁺ e ⁻		$3,2(5) \times 10^{-9}$		
$e^{-2\gamma}$		$< 7,2 \times 10^{-11}$	90%		$e^+\nu_e\nu\bar{\nu}$		$< 5 \times 10^{-6}$	90%	
$ \mu^{-}Ii \rightarrow e^{-}Ii $		$< 4.3 \times 10^{-12}$	90%		Моды распа;	ia c nec	охр. L (Lepton) или L	F (Lepton Famil	v)
$\mu I i \to e^+ C a$		$< 3,6 \times 10^{-11}$	90%		$\mu^+\nu_e$	L	$< 1.5 \times 10^{-3}$	00%	57
$\mu^+ e^- \rightarrow \mu^- e^+$		$\leq 4.7 \times 10^{-7}$	90%	**	$\mu^+ \nu_{\alpha}$	LF	$< 2.0 \times 10^{-3}$	5070	
$\mu^+ e^- \to \mu^- e^+$	LF.	$< 8,3 \times 10^{-11}$ e	90%	***			< 8,0 × 10 °	90%	
* Моды распад	a μ+ 3	арядовосопряженны пр	иведенным выше		$\mu^-e^+e^+\nu$	LF.	$< 1.6 \times 10^{-6}$	90%	**
** результат эк	сперил	ента группы ПИЯФ-С	ИЯИ, 1997		* Моды распа	ада π^- з	арядовосопряжены п	риведенным вы	ше
*** результат Н	SI B M	агнитном поле 0.1 Тс, 1	.999		** результат	экспери	мента группы ОИЯИ.	1991	

.5

16-

Higgs Bosons – H⁰ and H^{±±}

Higgs Bosons — H^0 and H^{\pm} , Searches for

MASS LIMITS F	or $H^{\pm\pm}$ (d	loubly-charged H	iggs b	oson)	
VALUE (GeV)	CLX	DOCUMENT ID		TECN	COMMENT
>45.6	95	142 ACTON	92M	OPAL	
• • • We do not u	se the follow	ing data for average	es, fits,	limits,	etc. • • •
		¹⁴³ GORDEEV 144 ASAKA	97 95	SPEC THEO	muonium conversion
>30.4	95	145 ACTON	92M	OPAL	$T_3(H^{++}) = +1$
>25.5	95	145 ACTON	92м	OPAL	$T_3(H^{++}) = 0$
none 6.5-36.6	95	146 SWARTZ	90	MRK2	$T_3(H^{++}) = +1$
none 7.3-34.3	95	146 SWARTZ	91	MRK2	$T_3(H^{++})=0$
					-

¹⁴²ACTON 92M limit assumes $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ or $H^{\pm\pm}$ does not decay in the detector. Thus the regio.. $g_{\ell\ell} \approx 10^{-7}$ is not excluded.

- ¹⁴³ GORDEEV 97 s arch for muonium-antimuonium conversion and find $G_{M\overline{M}}/G_F < 0.14$ (90% CL), where $G_{M\overline{M}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be onverted to $m_{H^{++}} > 210 \text{ CV}$ if the Yukawa copulings of H^{++} to ee and $\mu\mu$ are as large as the weak gauge coupling. For similar limits on muoniumantimuonium conversion, see the muon Particle Listings.
- 144 ASAKA 95 point out that H⁺⁺ decays dominantly to four fermions in a large region of parameter space where the limit of ACTON 9₂M from the s arch of dilepton mode does not apply.
- ¹⁴⁵ACTON 92M from $\Delta\Gamma_Z$ <40 MeV.
- ¹⁴⁶: WARTZ 90 assume $\overline{H^{\pm\pm}} \rightarrow \ell^{\pm}\ell^{\pm}$ (any flaver). The limits are valid for the Higgslepton coupling $g(H\ell\ell) \gtrsim 7.4 \times 10^{-7} / [m_H/\text{GeV}]^{+/2}$. The limits improve somewhat for e.e. and $\mu\mu$ decay modes.

H⁰ and H[±] REFERENCES

GORDEEV	97	PAN 60 1164	V.A. Gorde 斗	(PNPI)
		Translated from	YAF 60 1291.	• .
ASAKA	9.	PL 8345 36	÷Hilasa	(TOHOK)
ACTON	92M	PL 8295 347	+Alexander, Allison, Allport, Anterion+	(CPAL Coll 5.)
SWARTZ	90	PRL 64 2877	∓Abrams, Adolphsen, Averill, Ballam÷	(Mark II Cullab.)

Dzhelepov Laboratory of Nuclear Problems	OPERATION OF PHASOTRON (hours)	-
Investigations at Phasotron	03.02-29.04.2003	
(users' request facility)	Medicine	667
Fundamental Investigations: •DUBTO - Resonant behaviour of the both the $pp\pi$ - and $pn\pi$ + systems, produced in π 4He interaction	DUBTO	357
•MUON – Investigation of the muon properties and the muon interactions with matter.	Energy Amplifier (SAD)	65
 FAMILON - The study of the two-particle muon decay on an electron and golston's massless bosor μ-CATALISIS- Measurements of muon cataslazed 	Nuclear Spectroscopy (YASNAPP)	111
binary mixture D/T in the temperature dependence in a binary mixture D/T in the temperature range 40-300 K.	Machine development	198
Applied investigations: Cancer therapy; SAD- Energy Amplifier	MUON	238
Machine development:	TOTAL ACTUAL TIME IN 2003	1805
Upgrade of the Phasotron and its beam channels; Design of external injection in the Phasotron.	PLANED TIME IN 2003	2370

PROJECT 02-0987-92/2000

The Search for Two-particle Muon Decay to Electron and Goldstone Massless Boson (Familon)

SPOKESMAN VIKTOR GORDEEV SPOKESMAN FROM JINR VIKTOR DUGINOV

RUSSIAN RESEARCH CENTRE POCCИЙСКИЙ НАУЧНЫЙ ЦЕНТР "KURCHATOV INSTITUTE" "КУРЧАТОВСКИЙ ИНСТИТУТ"

 $\mu \rightarrow e + \alpha$

F. Wilczek, Phys. Rev., v. 49, 1549 (1982)
G. Gelmini et al., Nucl Phys., v. B219, 31 (1983)
А.А. Ансельм, ЖЭТФ, т. 84, 1961 (1983)

 $s \rightarrow d + \alpha$, $\mu \rightarrow e + \alpha$, $\nu_H \rightarrow \nu_L + \alpha$

В рамках реалистической SU(5)xSU(3)_н модели взаимодей-ствие фамилона с кварками и лептонами описывается лагранжианом

$$L = \frac{\sqrt{2m_{\alpha}m_{s}}}{\langle B \rangle} \alpha(\overline{ds} + \overline{s}d) + \frac{\sqrt{2m_{e}m_{\mu}}}{\langle B \rangle} \alpha(\overline{\mu}e - \overline{e}\mu)$$

 - среднее вакуумное значение хигсовских полей $\Gamma_0(\mu \rightarrow e\alpha) = \frac{m_{\mu}^2 m_e}{16\pi B_e^2}$. <u>Оценка Be=2 10⁸ GeV To=4 cek⁻¹</u>

$$B = \frac{\Gamma(\mu - e\alpha)}{\int_{E_{max}}^{E_{max}} \frac{d\Gamma(\mu - ev\overline{v})}{dE}} = \frac{6\pi^2 m_e}{B_e^2 G_F^2 m_\mu^3 \Delta \varepsilon},$$

$$\Delta \varepsilon = \frac{\Delta E}{E}.$$

$$\rightarrow E C \pi \mu B_e = 2 \ 10^8, \ \Delta \varepsilon = 10^4 \ \text{имеем } B \approx 4.5 \ \%$$

Familon could serve as an axion in solving the strong CP puzzle. Familon is also desirable in cosmology: the large-scale structure of the Universe could be naturally explained by the neutrino mass ~ (40 – 100) eV if such a "heavy" neutrino $v_{\rm H}$ decays rather rapidly (10⁸ – 10⁹ years) to the "light" neutrino $v_{\rm L}$ (m($v_{\rm L}$) < 10 eV) and the familon.

The most stringent constraint for the couplings of the familon is imposed by the absence of $K^+ \rightarrow \pi^+ + \alpha$ decay. This decay, however, occurs only due to scalar interaction of familon: for pseudoscalar coupling the matrix element $\langle \pi | \underline{s} | i\gamma_5 d | K \rangle$ vanishes by parity. But nondiagonal in flavour couplings of pseudogoldstone bosons can well be both scalar and pseudoscalar ones. For this reason the search for the $\mu \rightarrow e + \alpha$ decay appears to be important for the familon hypothesis, since scalar and pseudoscalar couplings contribute equally in this case. The interaction of familon with massive neutrino leads to decay $v_H \rightarrow v_L + \alpha$ with

 $\tau(v_{\rm H}) = (16 \pi \eta_v^2) / [m(v_{\rm H})^2 m(v_{\rm L})]$ If $\tau(v_{\rm H}) \approx 5.10^8$ years, $m(v_{\rm H}) \approx 100$ eV and $m(v_{\rm L}) \approx 10$ eV It requires $\eta_v \approx 2.10^8$ GeV. Note that the absence of K+ $\rightarrow \pi$ + + α decay implies $\eta_{\rm sd} > 8.10^9$ GeV for the scalar coupling of familon. Physical motivation

Welczek (1982), Anselm and Uraltsev (1983), Gelmini et al. (1983) have indicated to the possible existing of the massless goldston's bosons which changed fermion quantum numbers. The differential velocity $\mu \rightarrow e \alpha$ - decay is given by expression:

$$d\Gamma(\mu \to e\alpha) = \Gamma_0(\mu \to e\alpha) \left[1 - \vec{P}_\mu \vec{P}_e + 2(\vec{P}_e \cdot \vec{n})(\vec{P}_\mu \cdot \vec{n}) \right] \frac{\sin\vartheta \cdot d\vartheta}{4},$$

where $\Gamma_0(\mu \rightarrow e \alpha)$ - full breadth of $\mu \rightarrow e \alpha$ - decay for a unpolarized muon, $\vec{P}_{\mu} \& \vec{P}_{e}$ - polarization μ and e, \vec{n} - momentum direction of the positron.

The relative probability of the decay $\mu \rightarrow e \alpha$ to usual decay $\mu \rightarrow e \nu \overline{\nu}$ is determined by the ratio:

$$R_{\alpha} = \frac{\int_{0}^{\pi} d\Gamma(\mu \to e\alpha)}{\int_{0}^{\pi} \int_{0}^{\pi} d\Gamma(\mu \to e\vec{v}v)} = \frac{\Gamma_{0}(\mu \to e\alpha)}{\Gamma_{0}(\mu \to e\vec{v}v)}.$$

The relative contribution of decay $\mu \rightarrow e \alpha$ to usual decay in the narrow power interval $\Delta \varepsilon$ on the spectrum edge:

$$B_{\alpha} = \frac{\bigcup_{i=\Delta \varepsilon}^{\pi} d\Gamma(\mu \to e\alpha)}{\bigcup_{i=\Delta \varepsilon}^{\pi} \int_{0}^{\pi} d\Gamma(\mu \to e\vec{v} \mathbf{v})}$$

As it is clear for the decay of the $\mu \rightarrow e \alpha$ in the extremity of the decay spectrum positrons $\mu \rightarrow e v \overline{v}$ the narrow peak should be observed.

Fig.2. The energy dependence of the positron spectrum for $\mu \rightarrow e v \overline{v}$: decay (in relative units).

- 1 continuous spectrum, 2,3 for $\cos \vartheta = -1$,
- 4 the asymmetry coefficient of $\mu \rightarrow e$ decay.

The neutrino-less mode of the muon decay will change this energy dependence of the asymmetry coefficient in high-energy region.

<u>Table 1.</u> Relative contribution $\mu \rightarrow e \alpha$ decay to the conventional decay in the energy interval $\Delta \epsilon$.

Δε	10- 3	5.10-4	10-4	5 ·10-5	10-5
Bα	4,4 10-3	8,8 10-3	4,4 10-2	8,8 10-2	0,435

Taking into account the finite capture angle and the detection energy range $\Delta \varepsilon$, we have the following numbers of high energy positrons emitted along N⁺ and opposite N⁻ to the muon spin direction of the decay $\mu \rightarrow e v \overline{v}$:

$$N^{\pm} = \int_{1-\Delta\varepsilon}^{1} \int_{0}^{\vartheta} \Gamma_{0}(\mu \to e\overline{\nu}\nu) [(3-2e)\pm(1-2\varepsilon)P_{\mu}\cos\vartheta] \cdot \varepsilon^{2}d\varepsilon \cdot \sin\vartheta \, d\vartheta$$

Hence the asymmetry factor of high energy decay positrons $\mu \rightarrow e \ v \overline{v}$ will be

$$C' = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} = \frac{P_{\mu}}{2} (1 - 2\Delta\varepsilon)(1 + \cos\vartheta),$$

For the decay $\mu \rightarrow e \alpha$ we have due to the same reasons

$$N^{+} = N^{-} = \frac{1}{2} \cdot \Gamma_{0}(\mu \to e\alpha)(1 - \cos\vartheta),$$

and due to such process, the observed asymmetry factor of the $\mu \rightarrow e$ -decay is:

C''=C'
$$\frac{1}{1+R_{\alpha}/(2\Delta\varepsilon)}$$

where C' and R_{α} were defined above. One can see that the ratio C"/C' is independent of ϑ . This fact is important for experimental statistic accumulation, because one can use wide-aperture detectors. In the Table 2 we have the values of N[±], C' and C" for several different $\Delta \varepsilon$, ϑ , and R=8 10⁻⁶.

From these considerations follows, that the experimental search for the decay $\mu \rightarrow e \alpha$ can be performed by using the standard μ SR-equipment plus magnet spectrometer. The aim is to obtain the precession μ SR-spectra of polarized muon stopped in matter with high density of conductivity electrons, in perpendicular magnetic field.

The presence of the decay $\mu \rightarrow e^+\alpha$ leads to lower asymmetry factor in the high energy region of positron spectra. The experiment has to be performed in the beam of low energy muons, generated in decays of π^+ -mesons, stopped in the surface layer of meson-producing target (the "surface" muons).

First such of type experiment was performed by A. Jodidio et al. in TRIUMF (Tr. 8-12)

This <u>Fig.3</u> illustrate the energy dependence of the asymmetry coefficient C' of the $\mu \rightarrow e \nu \overline{\nu}$ -decay for two of angular capture. Δ - ϑ =5⁰ and \times - ϑ =15⁰ and the asymmetry coefficient C'' in the spectrum end of the decay positrons for energy $\Delta \varepsilon$.

It should be pointed out that the energy dependence of the asymmetry coefficient of positrons in the muon decay will be measured in the energy interval from 0,95 to 1.0 (in relative unites) with the step of 0.002. At the same time 25 μ SR-spectra will be collected. The effect of the positron multiple scattering will cause a minor drop of the asymmetry coefficient measured. However, there is no physical reason to expect contribution of the positron multiple scattering to the energy dependence of asymmetry coefficient, which will be equivalent to the expected effect in a case of neutrino-less decay of muon.

Searches for Goldstone Bosons (X⁰)

Searches for G	oldstone Horizontal	Bos	ions (X ⁰)	l imit	s are for	branching ratios.
VALUE	CL% E	/TS	DOCUMENT ID		TECN	COMMENT
• • • We do not	use the fo	llow	ing data for averages	, fits	, limits,	etc. • • •
			¹³⁴ DIAZ	98	THEO	$H^0 \rightarrow X^0 X^0, A^0 \rightarrow X^0 X^0 X^0$ Majoron
			¹³⁵ BOBRAKOV	91		Electron quasi-magnetic interaction
$< 3.3 \times 10^{-2}$	95		136 ALBRECHT	90E	ARG	$\tau \rightarrow \mu X^0$. Familon
$< 1.8 \times 10^{-2}$	95		136 ALBRECHT	90E	ARG	$\tau \rightarrow e X^0$. Familon
$< 6.4 \times 10^{-9}$	90		137 ATIYA	90	B787	$K^+ \rightarrow \pi^+ X^0$.
$< 1.1 \times 10^{-9}$	90		¹³⁸ BOLTON	88	свох	$\mu^+ e^+ \gamma X^0.$
			139 CHANDA	88	ASTR	Sun, Majoron
			¹⁴⁰ CHOI	88	ASTR	Majoron, SN 1987A
$< 5 \times 10^{-6}$	90		¹⁴¹ PICCIOTTO	88	CNTR	$\pi \rightarrow e \nu X^0$, Majoron
<1.3 × 10 ⁻⁹	90		142 GOLDMAN	87	CNTR	$\mu \rightarrow e \gamma X^0$. Familon
$< 3 \times 10^{-4}$	90		143 BRYMAN	86B	RVUE	$\mu \rightarrow e X^0$. Familon
$<1. \times 10^{-10}$	90	0	144 EICHLER	86	SPEC	$\mu^+ \rightarrow e^+ X^0$. Familon
$< 2.6 \times 10^{-6}$	90		145 JODIDIO	86	SPEC	$\mu^+ \rightarrow e^+ X^0$. Familon
HTTP://PDG	IN GO		146 BALTRUSAIT.	85	MRK3	$\tau \rightarrow \ell X^0$. Familon
			147 DICUS	83	COSM	$\nu(hvy) \rightarrow \nu(light) X^0$

Search for right-handed currents in muon decay

Search for right-handed currents in muon decay

A. Jodidio,* B. Balke, J. Carr,[†] G. Gidal, K. A. Shinsky,[‡] H. M. Steiner, D. P. Stoker,[†] M. Strovink, and R. D. Tripp Laurence Berkeley Laboratory and Department of Physics, University of California, Berkeley, California 94720

> B. Gobbi Department of Physics, Northwestern University, Evanston, Illinois 60201

C. J. Oram TRIUMF, Vancouver, British Columbia V6T2A3, Cana (Received 27 May 1986)

Limits are reported on charged right-handed currents, based on precise n point e+ spectrum in µ+ decay. Highly polarized µ+ from a TRIUMF "su stopped in pure metal foil and liquid-He targets selected to minimize depoly stopping target region either a spin-precessing transverse field (70 or 110 G) tudinal field (0.3 or 1.1 T) was applied. Data collected with the spin-preces the momentum calibration of the spectrometer. The spin-held data were us tive e+ rate at the momentum end point in a direction opposite to the u+ spi dard muon-decay parameters this rate is given by $(1 - \xi P_a \delta/\rho)$ where P_a is The combined 90% confidence lower limit from the analysis presented in th analysis of the spin-precessed data by means of the muon-spin-rotati \$P_8/p>0.9975. For models with manifest left-right symmetry and massl implies the 90% confidence limits m(W1)>432 GeV/c2 and -0.050 < 5 < predominantly right-handed boson and & is the left-right mixing angle. Lin the v_{al} mass and helicity in π^+ decay, non-(V-A) couplings in helicity pr scale of composite leptons, and the branching ratio for $\mu \rightarrow e + f$ where f massless Nambu-Goldstone boson associated with flavor-symmetry breaking

$P(e^{+})/p(e^{+})_{max}$

TRIUMF limit on familon

The decay rate µ→eα was added to the fitting function for the spin-held data.
 Was obtaind the 90% confidence limits

• R_α<2.6 10⁻⁶ $\eta_{\mu e} > 9.9 \ 10^9 \text{ GeV}$

FIG. 4. Values of $P_{\mu}A(3)$ in each x bin for metal targets, excluding run-2 Cu. Error bars are statistical errors added in quadrature to the possible systematic error from the spectrometer momentum calibration. The line is a fit by Eq. (2) using world-average values of 8 and p.

Crystal Box

Рис. 5: Схема детектора Crystal Box[15].

для событий $\mu \to e \alpha \gamma$, $\mu \to e \bar{\nu} \nu \gamma$ и случайных совпадений, соответственно; x_i — вектор, компоненты которого равны M^2_{eff} и $\Delta t_{e\gamma}$.

Пик функции $L(n_{ea\gamma}, n_{IB})$ расположен при значениях $n_{IB} = 7525 \pm 120$ и $n_{ea\gamma} = 0$, что находится в хорошем согласии с ожидаемым значением числа $\mu \rightarrow e\bar{\nu}\nu\gamma - pаспадов в исследуемой мишени: <math>(n_{IB})_{owna} = 7460 \pm 118(stat) \pm 800(syst)$.

Приведенные результаты для величины $R_{\alpha\gamma} = \Gamma(\mu^+ \to e^+ \alpha\gamma)/\Gamma(\mu^+ \to e\bar{\nu}\nu)$ дают значение:

 $R_{a\gamma} \le 1.3 \cdot 10^{-9}$ (90% уровень достоверности). (3.12)

4 Анализ высокоэнергичной части спектра позитронов $\mu \rightarrow e$ – распада.

Прямое наблюдение пика от распада $\mu \to e^+ \alpha$ на фоне распада $\mu \to e \bar{\nu} \nu$ помимо того, что требует магнитного спектрометра с высоким разрешением по энергии, связано и с многими трудностями абсолютных измерений — фоновые события, рассеяние и др.Однако, как показано в работах[17, 18], возможна такая постановка опыта по поиску распада $\mu^+ \to e^+ \alpha$, где абсолютные измерения заменяются относительными.

Рассмотрим распады $\mu^+ \rightarrow e^+ \alpha$ и $\mu^+ \rightarrow e^+ \bar{\nu} \nu$ с точки зрения углового распределения позитронов относительно направления спина мюона. Из формул (3.5) и (2.6) видно, что если в первом случае имеет место изотропное распределение позитронов распада, то во втором — резко выраженныя асимметрия вылета позитронов отно-

-----FAMILON-----

----- TEST RUN 30.05 - 2.06.201

H | asymmetry | omega | t0 f & L-ch | x^2 | Gauss | rad/mks | | 1 164 | .358 .005 | 14.047 .010 | 35.0 37 1000 | 975.1 | tdc1_12. 2 164 | .270 .003 | 14.007 .007 | 35.0 37 1000 | 1028.9 | tdc1_13. 3 164 | .276 .004 | 13.990 .009 | 35.0 37 1000 | 1037.4 | tdc1_14. 4 164 | .268 .004 | 14.021 .010 | 35.0 37 1000 | 1186.6 | tdc1_15. 5 164 | .510 .007 | 13.887 .009 | 35.0 55 1000 | 1196.7 | summary_

State Scientific Center of Russian Federation

Institute for Theiretical and Experimental Physics (ITEP)

Computer supply of the FAMILON experiment

The aims of simulation procedure were:

- 1. Optimization of the geometry arrangement of the set-up elements.
- 2. Analysis of the action of the density substances along the positron trace.
- 3. Evaluation of the positron momentum measurement precision.
- 4. Calculation of the positron detection efficiency.

FAMILON: Angle measurement precision

defines the distance between blocks of prop. chambers bihind magnet.

Two factors must be taken into account:

- 1. Errors in measuring of coordinates due to discrete disposition of sensitive wires in proportional chambers.
- 2. Positron multiple scuttering in air between the chamber samples.
- Both factors depends on distance between the samples.
- Optimal distance is determined by the minimum of the total presicion.

Coordinates measurement precision

Momentum measurement precision is determined by coordinate precision

Mothe Karlo efficiency evaluation

Efficiency of positron registration ε depends on energy E and angle θ of positron $\varepsilon = F(E, \theta)$.

E is defined by geometrical disposition of the magnetic spectrometer elements: size of the magnetic field region, scale and location of the proportional chambers and distance between the target and spectrometer.

The results of the methodical run are demonstrated the conformity of the realized *simulation*

FAMILON – methodical run

Predicted relative precision σ_P/P of the positron momentum measurement for different Sut-up modification.

1. Extreme precision (vacuum elswhere) -	5 10-4
 2. Maximal precision for the avaliable design of proportional chambers (vacuum + 3 plane of the) - 	2.5 10 ⁻³
3. Vacuum only in inside of the magnet -	5 10 ⁻³
4. Helium elswhere -	3 10-3
5. Air elswhere -	9 10 ⁻³
6. Vacuum inside of the magnet, helium in the residual volume -	2.6 10 ⁻³

-

1

LHC

LHCb

ALICE

CMS S

Пияф должен был изготовить 120 6-слойных камер

500 000 анодных нитей

Conceptual design of a CMS EMU CSC

trapezoidal chambers length up to 3.4 m width up to 1.5 m 6 planes per chamber 9.5 mm gas gap (per plane)

6.7 to 16.0 mm strip width strips run radially to measure φ-coordinate with ~100 μm precision

50 µm wires spaced by 3.2 mm 5 to 16 wires ganged in groups wires measure r-coordinate

gas Ar(40%)+CO₂(50%)+CF₄(10%) HV~3.6 kV (Q_{cathode}~110 fC, Q_{anode}~140 fC)

CSC Production at PNPI

PNPI CSC Factory

Assembling with electronics

PNPI Fast Site

Transportation to CERN

CROS3 Координатная Система

SB CARD

(512 CHANNELS)

HOST PROCESSOR

ния

AD_16 – 16-канальный усилительдискриминатор

SD_96 – Системный модуль синхронизации, задержки и кодирования

> SC_16 – Системный концентратор данных

SB- Системный буфер и интерфейс

ETHERNET

CROS3 Координатная Система Считывания

CROS3 – прототип координатной системы считывания, разрабатываемый с 2003 Учитывает достоинства (и недостатки) предыдущих систем CROS, CROS2 Использует достижения современных технологий интегральных микросхем в том числе – ASIC CMP16_g и FPGA Xilinx Spartan II

Особенности системы:

* Предусилитель, дискриминатор, задержка и считывание расположены непосредственно на детекторе * Быстрое кодирование и считывание данных с частотой 40 MHz * Возможность измерения временного распределения срабатывания каналов в интервале «ворот» схемы совпадений с дискретностью до 2.5 ns

CROS3_PWC Архитектура

Энергетический разброс пучка после мишени

yyka noche suugen

Figure 11: The Plane Parallel Chamber.

Figure 12: The Multi PPC structure as an Active target.

 10^2

-

Рис. 6. SR - спектр.

Project FAMILON II

In order to improve of the TRIUMF experiment and to get $R_{\alpha} \leq 3.10^{-8}$, it is necessary to have the energy resolution $\Delta \epsilon / \epsilon \sim 10^{-4}$, the time measurement accuracy of 250 ps, the solid angle $\Omega \sim 1.2$ sr, and the rate of muon stops of 2.106 s-1. It takes approximately 1000 hours of beam time on the 99% polarized "surface" muon beam.

To realize it, we propose to create the μ SR-spectrometer using the Time Projection Chamber to measure the momentum of a positron and a set of the Plane Parallel chambers as an active target to obtain the μ SR-spectrum.

Фазовые контрасты MCM режима поверхности исходной трансформаторной стали. Профилограммы вдоль оси Y при X = 4 мкм и X = 2 мкм соответствующих сканов

Топография и фазовый контраст МСМ режима поверхности намагниченной трансформаторной стали Профилограммы фазового контрасты выполнены вдоль оси Y при X = 2 мкм (верхняя) и X = 4 мкм

(нижняя)

Топография и фазовый контраст МСМ режима поверхности отожжённой трансформаторной стали. Профилограммы фазового контрасты выполнены вдоль оси Y при X = 2 мкм (верхняя) и

X = 6,5 мкм (нижняя)

Рис.1. Схема постановки эксперимента.

Рис. 8. Работа TDC (то же самое, что и рис. 7).

-

Рис. 10. Координатная система ПК2 (Х1, У1).

