

Some remarks on relaxation in diamond

V.N. Gorelkin

What does it happen with negative muon in diamond?

Negative muon will be stopped in diamond and captured by a carbon atom into 1S state.

Acceptor center in diamond

 $_{\mu}B$ muonic atom is a substitution impurity (acceptor) in diamond.

Everything discussed is valid only for pure samples (concentration less than 10¹⁷cm⁻³)! Will be discussed in details later.

> of muon polarization in paramagnetic state

e

 $A_{\mu \mathrm{B_diamon}}$ $\varepsilon_{\mu \mathrm{B_diamond}}$

 $A_{\mu Al_Si} = 25 \text{ MHz}$ $a_{\mu Al_Si} = 30 \text{ Å}$ $A_{Mu} = 4.46 \text{ GHz}$ $a_{Mu} = 0.5 \text{ Å}$

Muonic boron acceptor in diamond

Charges produced by Auger electrons

Typical temperature dependence of µ⁻ polarization amplitude

- T.N. Mamedov et al, JINR Preprint, P14-2004-104, Dubna (2004).
- T.N. Mamedov, D. Andreica, A.S. Baturin, D. Herlach, V.N. Gorelkin, K.I. Gritsaj, V.G. Ralchenko, A.V. Stoykov, V.A. Zhukov, U. Zimmermann, "Behavior of shallow acceptor impurity in uniaxially stressed silicon and in synthetic diamond studied by μ-SR", μSR2005, poster P80 (2005), submitted to Physica B.

Low temperature region

Negative mobility of electrons and holes at low temperature provides fast (less than 10^{-9} sec) and unobservable in μ SR "relaxation" (damping of polarization). One can detect it as a reduction of polarization amplitude. Experiment of Mamedov et al (2005) Based on material of previous report

High temperature region

Capture of charge carrier on the Columb center

Tompson's radius

$$-U(r_T) \approx \frac{3}{2}kT \qquad \longrightarrow \qquad r_T = \frac{e^2}{\varepsilon kT}$$

Cross section of carrier capture $(r_T < l_0)$ $\sigma \approx \frac{r_T}{l_0} r_T^2$ l_0 - length of energy loss, s - speed of sound, m - effective mass

$$\sigma = \frac{4\pi}{3l_0} \frac{e^2}{\varepsilon kT} \left(\frac{e^2}{\varepsilon \left(kT + 2.74ms^2\right)} \right)^2 \qquad K = \sigma \sqrt{\frac{8kT}{\pi m}}$$

V.N. Abakumov, V.I. Perel et al, Sov. Phys.Tech.Semicond. 12 (1978) p.3

Length of hole energy loss (acoustic phonon emission)

Comparison of theoretical prediction and experiments


```
\lambda = nK = n\sigma v
```

 $n = 9 \cdot 10^{11} \text{ cm}^{-3}$

Thermal concentration

Diffusion coefficient vs. energy at the different temperatures

Red – 10 K, blue – 30 K, magenta – 100 K

Conclusion I

- At all temperatures CAPTURE of holes is a primary mechanist of "relaxation" (damping of polarization).
- There are two temperature regions with quite different mechanism of temperature dependence of observables.
- At low temperatures (<50K) there is a very fast "relaxation", which could not be resolved in µSR experiment, and effective reduction of amplitude is registered.

Conclusion II

- At temperatures 50K 100 K the relaxation is determined by capture of the non-equilibrium holes (influence of track).
- At temperatures **more than 100 K** the equilibrium holes will also determine the capture rate.
- NOTE! The pure relaxation (phonon mechanisms) should be taken into account at the temperatures more than 100 K
- NOTE! The pure relaxation (exchange with neighbors) should be taken into account at high concentration of impurities (more than 10¹⁷ cm⁻³).

Acknowledgments

I would like to thank Tair Mamedov for presenting the experimental data prior to publication. Thank you for your attention!

How to find the parameter Ξ ?

