

Energy dependence of Mu formation in insulators and semiconductors

T. Prokscha¹, E. Morenzoni¹, D. Eshchenko^{2,1}, R. Khasanov¹, H. Luetkens¹, A.Suter¹, N. Garifianov^{1,3}

¹Paul Scherrer Institute (PSI), Villigen, Switzerland
²University of Zurich, Switzerland
³Physical-Technical Institute, Kazan, Russia
February 17, 2006, 27th μSR seminar, Repino

Motivation

> charge differentiation in μ^+ or Mu of fundamental interest in μ SR

moderation of μ⁺ to eV energies, "prompt" fractions in solid van der Waals gases (s-Ne, s-Ar, s-N₂, s-Kr, s-Xe)

➢ interaction of µ⁺ with track electrons, delayed Mu formation, LE- µ⁺ beam allows to "tune" number of track electrons between \simeq 20 and a few 1000 (surface µ⁺: \simeq 10⁵ − 10⁶ track electrons)

influence of implantation energy, *i.e.* number of track electrons, on experiments in insulators and semi-conductors

J. H. Brewer, UBC Vancouver, and Can. Inst. for Adv. Res.

PAUL SCHERRER INSTITUT

LEM beam with LE- μ SR spectrometer (status 12/2003)

Experiment

Samples:

Electric fields < 1.5kV/cm

SiO₂ 2mm thick, 50mm Ø, fused (Suprasil) and crystal

> Al_2O_3 0.5mm thick, 60mm Ø

intrinsic Si, 0.5mm thick, <100> perp. to surface

> s-Ne, s-Ar, s-Kr, s-Xe, s-N₂, grown at $p_g = 1.1 \times 10^{-6} - 5 \times 10^{-5}$ mbar (growth rate = 1Å/s - 45Å/s), layer thicknesses 1000 nm, grain size of order 100 nm

➢ temperature 5 K (s-Ne) – 30 K (s-Xe), SiO₂ 20K, 4-100K Al₂O₃, 5-250K Si

➢ B = 0.5 mT − 10 mT TF

Mu and diamagnetic asymmetries for

s-Ar film 1000nm, 10K (σ_{μ} = 0.08, λ_{Mu} = 0.5 μ s⁻¹)

s-N₂ film 1000nm, 13K (σ_{μ} = 0.14, λ_{Mu} = 7μs⁻¹)

SiO₂ glass, 20K (σ_{μ} = 0.17, λ_{Mu} = 3.2 μ s⁻¹)

Different growing conditions of the vander-Waals films

Charging of layer may hinder the recombination of e-h pairs, *Grosjean et al, NIMB 157 (1999)*

Comparison of different insulators

no delayed Mu in s-Ne films lower delayed Mu yield in s-Ar, s-N₂ than in bulk polycrystals

⇒ possibly caused by the large escape depths of epithermal μ^+ and grain size of order 100nm (trapping of excess electrons) $d_{e-\mu} = 50-100$ nm (Storchak, Eshchenko et al)

General feature:

decrease of A_{μ} accompanied 0^{0} by an increase of A_{Mu} 0^{0} This is attributed to 'delayed' convergence of a track electron with the thermalized μ^{+} , *i.e. delayed Mu formation*

T. Prokscha et al, Physica B 326 (2003) T. Prokscha et al, in preparation

PAUL SCHERRER INSTITUT

Thermal and prompt Diamagnetic and Mu fractions

	т [К]	thermal fractions [%]		prompt fractions [%]		Ref.
		dia	Mu	dia	Mu	
s-N ₂	20	19	81	60	40	Storchak, 1999
film	13.5	40	60	56	44	this work
gas		16	84	16	84	Fleming, 1982
s-Ne	22	10	90	>60	<40	Eshchenko, 2002
film	5	100	0	100	0	this work
gas		93	7	93	7	Fleming, 1982
s-Ar	78	0	100	50	50	Eshchenko, 2002
film	10	40	60	55	45	this work
gas		26	74	26	74	Fleming, 1982
s-Xe	150	5(3)	79(25)	-	-	Kiefl, 1981
film	30	5	95	35	65	this work
gas		0	100	0	100	Fleming, 1982
SiO ₂	20	17	83	40	60	this work
	298	15	85	40	60	Brewer, 2000

Summary 1:

➤ efficient delayed Mu formation requires of the order of 1000 electrons generated in the ionisation track → Siebbeles et al (J.Chem.Phys. 111 (1999)): "… delayed Mu formation cannot be described by considering only the last ionisation or the final spur of the muon track."

> delayed Mu formation is suppressed in thin films of s-Ne, s-Ar, s-N₂, possibly due to trapping of electrons at grain boundaries

➤ the prompt Mu fractions are significantly smaller in the solid vdWgases than in the low-pressure gases \rightarrow the picture of treating the vdWsolid as a dense gas is too simple due to breakdown of randomness of charge changing collisions at about 100 eV

Summary 2:

> Mu_{BC} in Si is mainly due to delayed Mu formation conforming with Efield µSR investigations

> weakly bound (E_A =130K) Mu⁻ is possibly the ground state in Al₂O₃, supporting the idea of delayed Mu⁻ formation

 \geq LE-µSR complementary to E-field bulk-µSR studies

energy dependence of delayed Mu formation in the keV range appears to be a general property

 \geq Mu_{BC}, possibly shallow Mu difficult to investigate at E < 5 keV

What to do next

- intrinsic Ge, Mu_{BC} fraction should be smaller than for Si
- try to observe Mu_{BC} in Si directly
- intrinsic GaAs

Try to observe shallow Mu in CdS and ZnO, according to recent E-field measurements in CdS (Eshchenko et al, PRB68 (2003)) shallow Mu is formed by capture of a radiolysis electron

Thanks to:

M. Birke, H. Glückler, Ch. Niedermayer, M. Pleines for their contribution at the beginning of these studies

H.P. Weber for his long-term technical support

PSI for financial support and the PSI Large Research Facilities Department