Muon Spin Relaxation Studies of Dilute Magnetic Semiconductors: Spintronics via µSR

V.G. Storchak Kurchatov Inst., Moscow D.G. Eshchenko Zurich Uni & PSI, Zurich J.H. Brewer UBC, Vancouver

Motivation

•Discovery of ferromagnetism (FM) in III-V semiconductors such as (Ga,Mn)As makes diluted magnetic semiconductors (DMS) good candidates for spintronics applications

•Practical spintronics applications of III-V DMS are limited by the fact that they are FM only at low temperature (below about 150K)

•Recently, room temperature ferromagnetism was reported in Mn doped chalcopyrite structures $II-IV-V_2$ in bulk samples

•Traditional techniques (magnetometry, anomalous Hall effect etc) cannot provide information on the distribution of magnetic fields in DMS

GaMnAs

Digital alloys

 $T_{c} \sim 80 K$

III- V

II- IV- V_2

$T_c \sim 150 K$

$T_{c} > 300K$

Hysteresis loop with coercive field of 20 Oe

Local field seen by the muon

$$B_{\mu} = B_{ext} - B_{dem} + B_{L} + B_{dip} + B_{cont}$$
$$B_{L} = 4\pi / 3 m$$
$$B_{dem} = 4\pi N m$$
$$B_{dem} = B_{ext} + 4\pi (1/3 - N) m + B_{dip} + B_{cont}$$

In our case (rectangular sample d~0.1a, field points perpendicular to the surface) N~0.8

CdGeAs₂:18%Mn

T=300K H=1T

Magnetic field which muon sees is lower than the external field

 $CdGeAs_2:Mn$

 $CdGeAs_2:Mn$

CdGeAs₂:18%Mn

InSb:Mn

Line width (~10G) is several times less than the shift This fact is inconsistent with presence of MnSb inclusions as inclusions would produce a field distribution as broad as the shift

NMR on Mn^{55}

Effect of Mn doping on lattice parameters of CdGeAs₂

Changing of lattice parameters is inconsistent with significant amount of MnAs

CdGeAs₂:18%Mn

CdGeAs₂:36%Mn

Scanning Electron Microscopy (SEM)

Auger Electron Spectroscopy (AES)

GaAs:1.5%Mn

XRD

Conclusions

•We found magnetic field shift inside our samples suggesting bulk FM

• This FM is incosistent with mere presence of MnAs or MnSb inclusions

Sample characterization:

```
X-ray diffraction (PSI, Switzerland)
Auger electron spectroscopy (UBC)
atomic force microscopy (Nottingham, UK)
NMR (Parma, Italy)
ESR (Parma, PSI)
susceptibility (Moscow)
magnetization (Moscow, Switzerland)
galvanomagnetic (PSI, Moscow): resistivity
magnetoresistance
Hall effect
```

Additional request: E-field experiment (12 shifts)

Measurements of the magnetic field shift as a function of a. amplitude of electric field (4 shifts) b. frequency of the electric field switching (2 shifts)

First we measure pure ZnGeP₂ (6 shifts) then ZnGeP₂:Mn (6 shifts)

 $CdGeAs_2:18.3$ %Mn

CdGeAs₂:36%Mn

Scanning Electron Microscopy (SEM)

Auger Electron Spectroscopy (AES)

Auger Electron Spectroscopy (AES)

InSb:2%Mn

Scanning Electron Microscopy (SEM) SEM1

Magnetic Field (Oe)

 $CdGeAs_2$:Mn T_c=355K

Cd

Ge

As