Spin dynamics in disordered solids.
F.S.Dzheparov

Modern state of studies in spin dynamics of statically disordered media
is presented. Next four fundamental problems are attended mainly:
1) delocalization of nuclear polarization in subsystem of impurity nuclei
(it is exemplified in model nuclear spin system °Li-°Li in the LiF single
crystal);
2) nuclear relaxation via paramagnetic impurities in crystals of arbitrary
space dimension d:
3) free induction decay and EPR line form function at d < 3; and
4) form function of the hole, burned on the wing of the dipolar EPR line.
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Main specifics of the theory of spin dynamics in disordered
solids results from the fact, that calculation of observable
values must start from the solution of equation of motion, and
then they should be averaged over random distribution of spins
in the sample. Nominally any problem in statistical physics
looks analogously, but content of existing text books is formed
by much more simple bypass ways to the results.

Important bypass classes:

1) quantum mechanics —  Boltzmann equation —
—  hydrodynamics:

2) projection technic of Nakajima-Zwanzig for deriving of
various master equations together with effective approxima-
tions for corresponding memory functions.



Both these bypass ways produce satistactory predictions if
the system have such small parameters as, tor example, ratio
of collision duration to time between collisions, or ratio of
memory time to time of variation of substantial observables
(the observables whereon the system evolution is projected).
Similar small parameters are not exist in disordered solids atter
some beginning stage, or they are absent at all. Theretore other
more refined methods are nec essary to predict experimental re-
sults. They are partially presented below.

First correct solutions of the problems of disordered media
kinetics, which are directly connected with the spin dynamics,
were obtained by Forster (1949) and Anderson (1951).



The Forster’'s problem.
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Pj= - Zﬂ:m UajPj = — Zr'ﬂ-r*!-‘rjpj, pi(t=0)=1. (1)
Here v,; 1s the depolarization rate under Influence of the a—th param-
agnetic center (acceptor), N is total number of acceptors in the sample,
Uyj = Uaj(Tq = 1), and ny, is occupation number of the site r by an acceptor
(ny = 1(0) if the site r is (not) occupied by an acceptor). Occupations of
different sites will be assumed as independent and having no dependence
on the r (with small probability of occupation ¢ < 1 as a rule):
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All r j are different in the last relation.



Coincidence in indexes can be treated using the identity n? = n,. The
problem consists in calculation of the observable polarization, averaged over
all possible positions of acceptors in the sample. Ensemble averaging can
be used for macroscopic samples: p(t) = (p;(t)). . Occupation number
representation gives the simplest and general solution of the last problem.

Indeed
p(t) = (p;(t))c = (exp (— D -n.-r-vrﬁ) e =] | {exp (=ruwnt))e =
— Hr(l + N, [exp (—urjf) — 1)), = Hr(l + clexp (—ggrjﬂ — 1)), =
= exp {Z In{1+ c(exp (—vyjt) — 1)}} .

The identity f(ny) = f(0)+n.(f(1) — f(0)) is applied here. It is valid for
any realistic functmn j( ‘). 'This relation is exact for any c.



Typical depolarization rate is of the form
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Vaj = VoTgX(Taj/Taj) /T 2
vy scales the transport at minimal distance 7, r,; = r, —r;, x(n) =
Vs i) ) Vs . . e 1 1L i . .
Y51 ()|, and Y}, (n) is the spherical harmonics. Additional simplification
is possible for the continuum media approximation (CMA), when ¢ — 0,

but p(0) — p(t) # 0 :
p(t,c — 0) =exp (n. / dr (ra_“’l‘it — 1)) = exp(—(Brt)""),

6/d. 6
Br x n " Mygry.

Here arbitrary spatial dimension d is considered, and impurity density n =
¢/€), is introduced together with the prime cell volume (..
Forster's parameter is proportional to transfer rate at average distance

Br = const - v(|r — rj| =7).



Anderson model for EPR line form function.
S =1/2, spins are randomly distributed inside a sample.

H = 5 Z qTrbrg b;bd — §Sr8q — Hjp = 5 Z '”-q'”-rf-}rq-blf-b;;i-
- r.q t S r.q

7 Ii3'1‘1:* =0

Spectra of both Hamiltonian coincide for two spin problems, if S = 1/2.

3 > D R

Exact solution for arbitrary concentration:
ne Sy (1) = np S exp (-s' E 'n.qﬂ;rrqb*at) , S= E NySy
5 r
Free induction decay (FID):

F(t) = (S (1)S-))e/{(S45-))e = ((exp (i D nabraSit))e =
— qu_‘-{}k, ”qhqrf 2) H (l + r"([‘.{}t’i(hqrﬁ-’?) — U) =

= exp ( In (1 + c(cos(bget/2) — LJ)) .
q



Applying CMA we arrive to Anderson’s result:

F(t,c—0)=exp (n/ddq (1— c-os(bqrt/Q))> = exp (—(DAt)d/S) .

D 4 1s proportional to the rate of the process taken at the average distance:

Dy o byl|q—1| = 7).




1. Delocalization of nuclear polarization in disordered spin
system.

Examples:

1) nuclei °Li in the single crystal "Li'F

2) nuclei 1*"Ag in the single crystal YAg!’F.

Experiment: "Li-°Li in the single crystal "Li'F,  3-NMR.

Polarized neutrons — polarized [3-active nuclei (-nuclei):
"Li(ii,7)°Li «——t = 0.

Angular distribution of [-radiation

W, t)x1+a-plt): cost.

Measurable value:
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Beta-NMR set up.

1- reactor shielding, 2 — collimator, 3 — cobalt polarizing mirror, 4 — chopper, 5 —
spin-flipper, 6 — collimator, 7 - magnets for leading field, 8 — p-detectors, 9 —
NMR-magnet, 10 — RF-coil, 11 — sample, 12 — cryostat, 13 — analyzer, 14 — neutron
counter.




Spin dynamics.

' = 81N —a(®Li
Single crystal LiF, g(°L1)—g("Li)

g(°Li)

= (.057.

Hy = 200G —— flip-flop ®Li-°Li has the same speed as flip-flop °Li-®Li.
other cross-relaxation transitions are forbidden.

Opio _
f.); —— Zj(ﬂﬁﬁm — Viipio),  Pio(t = 0) = 0.
piolt) = (I7(t)) is the quantum statistical average value of the z-component
(polarization) of the i-th nucleus, placed at r; (i = 0 corresponds to 5Li.

and i # 0 to °Li). The rates of polarization transfer:

1 -3 C{}BQ 0. : m ;5! 52
-0 7t 0 Y L'kl _
i tjyﬁ ( ('f'j/d)'a ) Vi 6 ( ) ( hd? ) Uj( j)'

&= 1i(L4+1)/[S(S+1)], gi — g-factor, 3, is nuclear magneton, #;; is the
angle between Hp and rj; =r; —r;, d = 2.01A is minimal Li-F distance.

w;; 1s difference of the Larmor frequencies.



gi;(w) ~ exp(—w?/(2M))/2r M)'/2, M = 2Ms,

M, is second moment of the °Li NMR line. This approximation 1s correct

quantitatively at least for w? < 2M. As a result u%- have two values only.
u% = 1 for transfer between °Li spins (at that w;; = 0), and v = vy for

transfer between °Li and °Li (with w;; = A).
The way to

Py _

f); — = Zj(uﬁmg — ViiPi0) pio(t = 0) = dy.

1s long and complex, but disorder is not important here and standard small

parameters were utilized. Roughly speaking the way is similar to derivation
of hydrodynamics from quantum mechanics via Boltzmann equation.
The occupation number representation of the equation is of the form

0Py : i ,_ |
H;{ — _ Zz(nzuﬂ]’xg — nxVxzPa0). Pyo(t = 0) = nydxo/c.




OPyo - - - |
f): = — Zz(w.zumﬂm — NxUxzPr0), Pyo(t =0) = nyxdxo/c.

The propagator Py gives polarization of the lattice site x when initially
the site 0 was polarized, and v, = v;(r; = z,r; = x).

The measurable value: Fyy(t) = (pyo). = (ﬁgg)f.
Random walks in disordered media (RWDM) <= one of the most complex
modern field of the statistical physics.
The path integral:

qil)=y
Py (t) = / 0) Dp(7)Dq() exp(I]p. q]).
q =X

Y . L gt o
Ip.q] = f/ pdq + 'n../d'g:' (rﬁ_tfﬂ drA*(q(7).p(7)) _ 1) ,
X

A% (q.p) = Vg (1 — ff"’:l}(z_q)). The representation is similar to, but more
complex than path integrals in famous polaron problems. Superfield path
integral representations for Pyy(t) = (Fky). exist as well.



These representations demonstrate the relation of the RWDM to general
problems of the modern field theory, but they are too complex, and real
calculations now are based on concentration expansion (real parameter:
™ — (Bt)™?) for Bt < 1, and numerical simulation (giving diffusion
tensor) for 5t > 1.

The theory had produced the interpolating formula (without experimental
fitting parameters)

Poo(t) = F(t) = exp(—+/Pit) + 5;1 —{exp( Vil ( N s )

(uB(t +7))3/2

§ : 1/3
¢ =& =II+1)/[S(S+1)] =3, uB=dm (c/QW)** (HS Dﬂ_) =0.71,

a=1
=209, pBr =511, B = (256/243)m cuyry /Q%, B = Bvi /vy, ¢ < 1.
Poo(t) holds to within (5t)1/? at small 3¢, and it holds to within (3t)=2 at
large [(3t.



Last results of the I'TEP group indicate that at 3;t ~ 25 some correction
1s necessary. It can be introduced as

L+ )Bit — u(Bit)?
P[](](t) = F(f) (1 = (a i (1)%__.!_1.‘,.))#):3( & ) '

. 1 — exp(—+//it) P
F(t)=exp(—/ i) + E—— =7 _ .-
) b=V + (uB(t +1))3/2 (1 T VBt + ’r))

Here F'(t) is old relation, & = ar(A) have been tabulated basing on the short
time asymptotics, and fitting parameters u and v should be determined by

experimental data. New relation holds to within 3t at small 3¢, and it
holds to within (3t)~ at large 3t. The fitting produces u ~ 0.06 and
v 22 0.12. Direct numerical simulation of the Ppo(t) is expected now as a

natural way for more detail comparison of the experiment and theory:.



time, s

c=10.06(4)%, P,=10.80s", B,=10.185"", H;=200G, 1=0.761, u=0.054(3), v=0.111(6).
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Depolarization kinetics of 8Li -nuclel in LiF crystals, having various concentration of 6Li
isotope. External magnetic field is equal to 200 G. It is parallel to the [111] axis of the
crystal. Error bars indicate the statistical uncertainties only. Solid lines are the result of
the fitting with simplest correction Gexp(t).
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Observable time dependence of the B-decay asymmetry for the °Li-Li system in LiF single
crystal. Orientation: [111]||H,; °Li concentration ¢=10.06(4)%. The neutron pulse duration
t,=2.5 c. Lower line presents the calculation result without fitting parameters. Upper line
includes simplest correction function G,,(t) with fitting parameters u=0.054(3) and
v=0.111(6).



2. Nuclear relaxation via paramagnetic impurities.

Other important generalization of the Forster’s process is presented by
nuclear relaxation via paramagnetic impurities, which is main relaxation
channel in isolators if nuclear spin I = 1/2. The fundamental studies
Khutsushvili 1965, Alexandrov 1975, Atsarkin 1980, Abragam & Goldman
1982] were based on calculation of the linear (in impurity concentration c)
term of the time dependence of the sample magnetization P(t) = 1—cQ(t)
(for 3d-systems) with following substitution P(t) = exp(—cQ(t)). Analysis
of two- and one-dimensional problems was absent whereas experiments are
already aimed at fractal objects [Tabti et al. 1997]. Therefore new theory
was constructed |Dzheparov, Jacquinot, Stepanov 2002]. It produce the
relation P(t) = exp(—cQ(t)) as main approximation, and the function
(Q(t) is caleulated for arbitrary d < 3.



The process 1s used to be described by the kinetic equation

Op(x, t 6 .
IJEE ):Dﬂ\p(x.t)—z NaUmP(X. 1), Vg = vy

’ x -2 [x—zf

with initial condition p(x,f) = pp. Here p(x,t) is polarization of the
nucleus, placed at the crystal site x. [ is spin-diffusion coefficient, and the
angular dependence of v,y 1s neglected. The observable nuclear polarization
(normalized to p(t =0) =1) is

B(t) :% f Irp(x, t) = (0|G(5)|0) = (0(G(t)).]0).-

Here d is the space dimensionality, {2 is the crystal volume, the symbol |0)
presents a vector having components (x|0) = 1/ V), and the propagator
Gyy(t) = (x|G(t)|y) obey the same equation, but for initial condition

Gyt =0)=0x—-Yy)




Expansion of the observable p(f) in concentration powers:

p(t) = (0|G(t)|0) = ()[0)4n / ~GYUH)|0)+0(n*) =
= exp (- Mo(t)(1 + O(n?)).

it =n [ a0l - o))

The propagator G (t) corresponds to evolution in the absence of ac-
ceptors, and GW(t,r) is the propagator of the system, having only one

acceptor, placed at r. Then, using operator transformations, we have

Vp(N) = / mf-fn-r‘” \ (f)—LQ(O\(-’ . 0) =

BRI A D Yt W I
nQ 1 nd < |(n|Us|0)]?
O , Uol0) = Teon
A+U)+A+T,) X ~(\+L,E,

A=-DA, x|Upz) = 0xztx0, (A+ L-'[})\w.) = E,|n).



Obtained representation 1s too complex for direct calculations, but it 1s
useful for different asymptotical treatments. Most important of them are
short time and long time studies, because a satisfactory precision can be
achieved using the representation

My(t) = Mp(t) + My(2).

Mp(t)=n / d"z(1 — exp(—vxot)) = (Brt)"*.

vxo = vorg /27 is applied to clarify some parametrical dependencies.
Mp(t) describes the initial (Forster’s) part of relaxation, while Mi(t) is
the longtime asymptotic expression. formally continued to arbitrary time
t. The results, obtained for Mj(t) at arbitrary d < 3 are not short. They
are presented in details in the article.



Satistactory precision can be achieved using the representation

Mo(t) = Mp(t) + Mi(2).

Mp(t)=n / dz(1 — exp(—vxot)) = (Brt)Y*.

In particular, in main asymptitics,

Dt Adr Dnt
Mi(t,d =1) =4n . M(t,d=2)= .
1t ) = dn T 1(f,d =2) In(Dt/b?)

My(t,d = 3) = 4r Dbnt,

b o (C'/D)=2) is a "scattering length”, which incorporate all depen-
dence on the "potential” 1. It 1s evident, that at d = 1 the dependence
on b 1s absent here, and for d = 2 is is rather weak.



New mean field theory.
In order to find argumentation for regrouping of the concentration ex-
panslior,
1 — My(t) — exp(—My(t))
we represent the propagator G(t) in the form (no approximations!)

G(t) = (exp(—(A+ U)t)). = exp(—DB(t)), DB(t)=At+ M(t),
U = Zz ngU%  Uly = Oxqtxay M(t) = ZE M,(t).

[t can be said that the operators M(#) must adequately describe the effect
of acceptors in the so-called effective medium that appears upon averaging
over the configurations of acceptors. It is therefore natural to assume
that, on average, the propagator G;(t) undergoes no changes if one of the
sites of the effective medium is replaced by an actual one and if the result
is thereupon averaged over the distribution of acceptors; that is,

G(t) = (exp(— At — M(t) + M*(t) — n,U%t))..



The relations, formulated above, gave a closed set of nonlinear operator
equations. The solution practically coincides with

s

P(t) = exp(= My(1)).

if cQ(t) = My(t) ~ 1 and c < 1.
Corrections are important for longer time.

It should be stressed, that
1) to clarify the influence of corrections to this solution in more details we
can calculate next (o ¢?) term of the concentration expansion, and
2) there exist physical [Balagurov & Waks 1973 and mathematical studies,
giving the law

p(t — o)) x exp (—(t / 'T)df(fm)) _.

which is expected to be valid at p(t) < 10712



3. Resonance line form function for
magnetically diluted solids with arbitrary space dimension.

The line shape and the Fourier-transform-related free induction decay
(FID) belong to the most important observable values in physics of mag-
netic resonance. It is well known, that in the study of nuclear spin systems
forming a crystal lattice the first (x #* and o #*) terms of the expansion of
FID in powers of time carry highly important information. In the theory of
the line shape of disordered (magnetically diluted) electron spin systems,
the first (o ¢ and o ¢?) terms in the expansion in powers of the concen-
tration ¢ of paramagnetic centers plays the same role |[Dzheparov, Lundin,
Khazanovich 1987]. The third (x ¢*) term was calculated in a recent study
[Dzheparov & Kaganov 2002| for the first time. The consideration is par-
ticularly topical in connection with the new experiments on measuring the
EPR spectra of paramagnetic impurities distributed at the solid surface
[Atsarkin et al. 2000, 2001).



Let the paramagnetic centers (PCs) be randomly distributed in a d-
dimensional crystal lattice with the prime-cell volume €2.. The free in-
duction decay in the high temperature approximation is given by

G(t) = ({(ST(t)S7)0)e/{{(STST)o)e ,

where ST =Y n,S%, S = SF +£iSY, ST(t) = eHiGte G =1/2,
n, is the occupation number, (---)g = Tr(--+)/Trl , (---). stands for the
averaging over the spatial spin distributions (over occupation numbers),
and H is the secular part of dipole-dipole interactions:

3
H = ;‘_Izr'q n.n A(r, q)(S; S S,).

Here A(r,q) = iy*(1 — 3cos® ¥,,) /|r — q|3. v 1s the gyromagnetic ratio,
and v, 1s the angle between r — q and external static field Hy. Parameter
a = 0 in the Anderson model and @ =1 for pure dipole interaction.



For other a values the Hamiltonian corresponds to a system with the
anisotropic axisymmetric g-factor. In what follows, S = 1/2 for all PCs.
Concentration expansion:

G(t)=14+n / dr (2K (1) — 1)+

—|—% {fd'f'1dd'f'2<2f‘f@1g(f) — 2K (f) — 21[{09(?%) + 1)+ O(-n_.aj_

where n = ¢/(Q, is the d-dimensional PC density, and
Ko(f) = (o' S M0t (S5 4 57)o
Kona(t) = {02 S e 702! (S5 + ST+ 57))o

1 o
Hij = Efl”(gbfb; — (Ls.gsj). Hy1o = Hop + Hpo + Hyo,

with A;; = A(r;, r;). The interaction A;; o |r; — rj|_3. Therefore substi-
tution of integration variables r; — t/3r; excludes time from the integrands

m

and reveals that n™-term is ~x (-n,.td-f' 3)



Real parameter is
(Dgt)® =n / dry(1 — 2Koi (1)) .
Therefore
G(t) = L+ (Dat) "+ S6ala) (Dt + O((Dat)’)

The functions &4(a) were calculated numerically basing on diagonalization
of the three-spin Hamiltonian. It was supposed, that at d < 2 all field
directions are equally probable, then

¢ Sala)

G(t) =1 — (Dat)% + 22 (Dgt) ¥ + O((Dat).

and
i:.

o i

i/

33

D5 coincides with the Anderson’s result by construction.

Dy = B h, By = By = 4.647, [y = 6.348.




The results are presented in the table:

a 0 02 04 06 08 10 12 14 16
& 01 1.01 1.03 1.05 1.08 1.11 1.13 1.15 1.18

& 1.027 1.07 111 1.15 1.19 1.22 1.25 1.27 1.29

& 1.062 1.16 1.20 1.25 1.28 1.32 1.35 1.37 1.40

Obtained relations can be used directly for analysis of the wings of ex-
perimental EPR lines. But treatment of the full line or FID requires to
regroup the concentration expansion in such a way to receive physically
adopted result for all . One of the simplest approaches |Galiullin et al.
1981, Dzheparov et al 1993, 1997] was generalized for this aim. The ap-
proach introduces the most essential properties of the disordered systems
into the Anderson-Weiss-Kubo (AWK) theory, which was originally de-

s

veloped for the description of motional line narrowing,



The result 1s of the form
d/6

t
G(t) =exp | — (233 / flT(t—-T)F(BdT))
()

R ~3d/3
F(z) = exp(—(qqz)™?).
Being approximative this representation nevertheless reproduces the structure

of the concentration expansion, nonnegativity of the resonance line shape
and parameters 5 and ¢; can be defined using 1), and &;. that gives

Bs=D3, By=Dy ¢=3¢-1), q=/(10/3)(&-1))**

The dimensionality d = 1 requires more refined treatment, because system
orientations near the "magic” direction # = arccos(1/v/3) produce a sin-
gularity gi(w — 0) o< In(1/w).



For pure dipole interaction with @ = 1 our resu

¢, = 0.63. Fitting of the experimental data |Atsar

ts give g3 = 0.33 and
cin et al. 2000] in the

region, where the samples were considered as two-dimensional, gives ¢y =

gy " ~ 0.05 with significant distinctions from both ¢y = 0, and ¢y = 0.63.

Additional studies are necessary to clarity the nature of this deviation from

pure dipole evolution.



4, Saturation on the wing of a dipole-broadened EPR line
and cluster expansions.

One of bright demonstration of peculiarities of the spin dynamics in
disordered media 1s realized in the shape of the hole burned on the wing
of the EPR line. The EPR spectrum in dipole broadened 3d solids has
Lorentz wing, but the experiment |[Atsarkin et al. 1986] revealed that
wing of the hole falls down exponentially contrary to the expectation.
that dipole broadened line should be homogeneous. To solve this contra-
diction new method of cluster expansions [Dzheparov, Khenner, Kaganov
1993,1997] was constructed, which gives an alternative to both concen-
tration expansion, discussed in p.3, and spin pockets conception [Porter
1953], used by Atsarkin et al. for interpretation of the data.
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Forbidden volume of energy 2-clusters for different orientation with respect to H,. The
figure shows sections cut by the plane in which the spins forming the cluster lie.
o - position of the spin.



[f interaction inside a pare of spins exceeds interactions with any other
spin, then the spectrum of the pare is similar to discrete one, broadened by
small interaction with surrounding spins. The pare forms two-spin cluster
(2-cluster). Analogically we can define 3- and other many-spin clusters.
[t is sufficient for many tasks to divide all spins in tree groups: 2- and
3-clusters and all others "mass” spins. Numerical analysis |Dzheparov,
Khenner 1993] shows, that 2- and 3-clusters contains 51(1)% and 11(1)%
of all spins correspondingly, but 2-clusters define all Lorentz wing of the
EPR line. Mass spins (similar to nuclear spins in a crystal) have finite heat
capacity, which is defined by interaction at average distance. They produce
fluctuating fields. which gave main broadening of the clusters spectra. Tran-
sitions between states of the cluster take place due to interactions with other
clusters and with mass spins, and they are slow.



As a result saturation at the EPR line wing induce transitions between
states of the 2-cluster, and line shape of the hole is defined by interaction
of the cluster with mass spins. If this interaction is estimated within the
AWK model, then any mass configuration produce exponential wings of
the hole

g(A) oc exp(=A/p),
where A 1s detuning of the saturating field from the cluster transition fre-
quency, and ¢ is defined by magnitude of the fields produced by other spins
on the cluster, and by the rate of their fluctuations. After configurational
averaging the wings became
- ' (9(4)) o A7,

Averaged hole shape describe the transitions for small magnitude wy of the
saturating field only.



In general case of exponential hole line wing the observable area of the
i:.
hole o should be averaged, and for t,wy/p > 1

o x In (tpwf /n).

where t, Is the duration of the saturating pulse. Logarithm 1s slow function,
therefore

(g), o In (tpw%/{gf.)g) .
that was observed by Atsarkin et al. and was interpreted as exponential
wing of Porter’s pockets. Described theory produce microscopic picture of
the phenomenon and indicate, that Porter’'s pockets have limited relation
to the problem. because they are homogeneous by definitions, 1.e.

g(A) = {g(A))..

while in the more microscopical theory this relation isn't fulfilled.



Conclusions

Four problems of the spin dynamics in disordered solids were discussed:
1) delocalization of nuclear polarization in subsystem of impurity nuclei
(it is exemplified in model nuclear spin system SLi-°Li in the LiF single
crystal);
2) nuclear relaxation via paramagnetic impurities in crystals of arbitrary
space dimension d:
3) free induction decay and EPR line form function at d < 3; and
4) form function of the hole, burned on the wing of the dipolar EPR line.



Occupation number representation was effective tool in all these problems
at least for direct calculation of short time asymptotics basing on concen-
tration expansions.

Special efforts are necessary for transtormation of these expansions into
results, physically adopted for all times. Important information for such
activity was obtained by numerical simulation. New mean field theory gives
important msight for similar transtormations. Cluster expansions can be
useful for better understanding of many problems.

New studies are necessary in order to improve the theoretical and exper-
imental tools for future investigations.



