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Multi-peripheral kinematics

The importance of the multi-peripheral kinematics (MPK) was realized long time ago.
K.A. Ter-Martirosyan, Nucl.Phys. 68 (1965) 591
In high energy perturbative QCD this kinematics provides the dominant contributions.
In the process of multi-particle production A+B −→ P0 + P1 + . . .+ Pn + Pn+1 the
multi-Regge kinematics (MRK) means that all final particles are well separated in

rapidity space: y0 À y1 À . . .À yn À yn+1, here rapidities yi = 1
2 ln

k
+

i

k
−

i

,

ki = k+
i n1 + k−i n2 + ki⊥, where k+

i = (kin2), k−i = (kin1), and n2
1 = n2

2 = 0, (n1, n2) = 1

In the next-to-leading logarithmic approximation (NLA) the contribution of the
quasi-multi-Regge kinematics (QMRK) also must be taken into account. In QMRK
instead of one particle Pi we have jet Ji, so as within it particles have close rapidities.
We can consider both MRK and QMRK cases treating with jets Ji consisting of one or
two particles.
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Hypothesis of the gluon Reggeization

The ground of the BFKL approach is assertion that the MPK amplitudes with the gluon
exchange and negative signature are dominant, and their real part acquires the form:

<A2→n+2 = Γ̄R1

J0A

(
n∏

i=1

eω(qi)(yi−1−yi)

q2i⊥
γJi

RiRi+1

)
eω(qn+1)(yn−yn+1)

q2(n+1)⊥

Γ
Rn+1

Jn+1B .

The hypothesis is extremely powerful:

It allows us to express scattering amplitudes only through several effective vertices and gluon trajectory.

It creates the basis of the BFKL approach to the theoretical description of high energy scattering.

The Pomeron and Odderon in QCD appear as the compound state of the Reggeized gluons.

The effective action based on Reggeized gluons is the most general way of the solution of saturation

and unitarization problems.

It gives a link between QCD and the String Theory.

XL PNPI Winter School, 20–26 February, 2006 – p. 4/13



Hypothesis of the gluon Reggeization

The ground of the BFKL approach is assertion that the MPK amplitudes with the gluon
exchange and negative signature are dominant, and their real part acquires the form:

<A2→n+2 = Γ̄R1

J0A

(
n∏

i=1

eω(qi)(yi−1−yi)

q2i⊥
γJi

RiRi+1

)
eω(qn+1)(yn−yn+1)

q2(n+1)⊥

Γ
Rn+1

Jn+1B .

B

Jn+1J0

A

q2, c2 qn, cn qn+1 cn+1q1, c1

kn
kn+1k0

pA pB

J1 Jn

k1

XL PNPI Winter School, 20–26 February, 2006 – p. 4/13
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<A2→n+2 = Γ̄R1

J0A

(
n∏

i=1

eω(qi)(yi−1−yi)

q2i⊥
γJi

RiRi+1

)
eω(qn+1)(yn−yn+1)

q2(n+1)⊥
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Rn+1
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The gluon Regge trajectory ω(t) was calculated up to two loops.
V.S. Fadin, R. Fiore and M.I. Kotsky, Phys. Lett. B387 (1996) 593
In the integral form the trajectory is known also for arbitrary space-time D.

V.S. Fadin, R. Fiore, M.I. Kotsky, Phys. Lett. B359 (1995) 181

In the limit ε→ 0 we have in terms of Born trajectory

ω(1)(t) = −g2 NcΓ(1−ε)
(4π)D/2

Γ2(ε)
Γ(2ε)

(
−q2⊥

)ε
∝ αS

ε

explicit expression

ω(t) = ω(1)(t)

(
1+

ω(1)(t)

4

[
11

3
+
(π2

3
−

67

9

)
ε+
(404

27
−2ζ(3)

)
ε2 +

2nf

3Nc

(
1−

5

3
ε+

28

9
ε2
)])

J. Blumlein, V. Ravindran and W.L. van Neerven, Phys. Rev. D58 (1998) 091502
V. Del Duca and E.W.N. Glover, JHEP 0110 (2001) 035
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Hypothesis of the gluon Reggeization

<A2→n+2 = Γ̄R1

J0A

(
n∏

i=1

eω(qi)(yi−1−yi)

q2i⊥
γJi

RiRi+1

)
eω(qn+1)(yn−yn+1)

q2(n+1)⊥

Γ
Rn+1

Jn+1B

ΓR
Q′Q and ΓR

G′G are the vertices describing transitions Q→ Q′ and G→ G′

in collision with Reggeon R. Now they are known with NLO accuracy.

In light cone gauge the vertex of gluon transition can be written as:
Γ

c(B)
G′G = −g

(
e∗(p′)e(p)

)
⊥
T c

G′G

Γa
G′G = Γ

a(B)
G′G

{
1 +

ω(1)(t)

2

[2
ε

+ ψ(1) + ψ(1 − ε) − 2ψ(1 + ε)−

−
9(1 + ε)2 + 2

2(1 + ε)(1 + 2ε)(3 + 2ε)
+
nf

Nc

(1 + ε)3 + ε2

(1 + ε)2(1 + 2ε)(3 + 2ε)

]}
+

+ gT a
G′Ge

′∗
⊥µe⊥ν

(
gµν
⊥ − (D − 2)

qµ
⊥q

ν
⊥

q2⊥

) εω(1)(t)

2(1 + ε)2(1 + 2ε)(3 + 2ε)

(
1 + ε−

nf

Nc

)
,

V.S. Fadin, L.N. Lipatov, Nucl. Phys. B406 (1993) 259
For NLO ΓR

Q′Q see V.S. Fadin, R. Fiore, A. Quartarolo, Phys. Rev. D50 (1994) 2265
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eω(qi)(yi−1−yi)

q2i⊥
γJi
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ΓR
{Q′G′}Q, ΓR

{QQ}G
and ΓR

{G1G2}G are vertices describing the fragmenta-

tion of initial state particle in collision with Reggeon R.

Γc
{G1G2}G =

(
T aT c

)
i1i2

(
A
(
(k1 − x1k)⊥

)
−A

(
(x2k1 − x1k2)⊥

))
−

−
(
T cT a

)
i1i2

(
A
(
(−k2 − x2k)⊥

)
−A

(
(x2k1 − x1k2)⊥

))

A(p⊥) =
2g2

p2
⊥

[
x1x2(e

∗
1e

∗
2)⊥(ep)⊥ − x1(e

∗
1e)⊥(e∗2p)⊥ − x2(e

∗
2e)⊥(e∗1p)⊥

]

L.N. Lipatov, V.S. Fadin, Yad. Fiz. 50 (1989)
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Hypothesis of the gluon Reggeization

<A2→n+2 = Γ̄R1
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(
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RiRi+1

)
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q2(n+1)⊥

Γ
Rn+1
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γG
R1R2

is the vertex of one gluon production.

γG(B)
c1c2

(q1, q2) = gT a
c1c2

e∗µ(k)Cµ(q2, q1)

Cµ(q2, q1) = −qµ
1 − qµ

2 + nµ
1

( q21
k−

+ 2k+
)
− nµ

2

( q22
k+

+ 2k−
)
,

L.N. Lipatov, Yad. Fiz. 23 (1976) 642

Different parts of this NLO vertex were calculated in some works:

V.S. Fadin, L.N. Lipatov, Nucl. Phys. B406 (1993) 259
V.S. Fadin, R. Fiore, A. Quartarolo, Phys. Rev. D50 (1994) 5893
V.S. Fadin, R. Fiore, M.I. Kotsky, Phys. Lett. B389 (1996) 737

Now it is known in the NLO for arbitrary D = 4 + 2ε

V.S. Fadin, R. Fiore, A. Papa, Phys. Rev. D63 (2001) 034001, hep-ph/0008006
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Hypothesis of the gluon Reggeization

<A2→n+2 = Γ̄R1

J0A

(
n∏

i=1

eω(qi)(yi−1−yi)

q2i⊥
γJi

RiRi+1

)
eω(qn+1)(yn−yn+1)

q2(n+1)⊥

Γ
Rn+1

Jn+1B

The vertices for two-gluon γG1G2

R1R2
and quark-antiquark production γQQ

R1R2
in

Reggeon-Reggeon collision were found for the first time in the work:

L.N. Lipatov, V.S. Fadin, Yad. Phys. 50 (1989)

Recently they were obtained together with vertices RPP, RRP, RPPP, RRPPP, RPPPP

E.A. Antonov, L.N. Lipatov, E.A. Kuraev, I.O. Cherednikov, Nucl. Phys. B721 (2005)
111, hep-ph/0411185
from the effective action:
L.N. Lipatov, Nucl.Phys. B452 (1995) 369; Phys.Rep. 286 (1997) 131
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The method of the Reggeization proof

The proof of the gluon Reggeization in LLA was performed 30 years ago by
Ya. Ya. Balitskii, V.S. Fadin, E.A. Kuraev and L.N. Lipatov.
In NLA the gluon Reggeization proof is grounded now on the bootstrap relations (b.r.):

1

−πi




n+1∑

l=j+1

discsj,l
−

j−1∑

l=0

discsl,j


AS

2→n+2/(p
+
Ap

−
B) =

∂

∂yj

AS
2→n+2(yi)/(p

+
Ap

−
B)

that allow us to express partial derivatives ∂/∂yj of the amplitudes, through the certain
combination of discontinuities of the signaturized amplitudes:
V.S. Fadin, Diffraction 2002, Ed. by R. Fiore et al., NATO Science Series, Vol. 101, p.235.
S means symmetrization with respect to simultaneous change of signs of all si,j with
i < k ≤ j, performed independently for each number of channel k = 1, . . . , n+ 1.
One of the methods for the b.r. derivation is based on the Steinmann theorem in
conjunction with general analytical properties of the MRK amplitudes
O. Steinmann, Helv. Phys. Acta, 33, 33(1960); J. Bartels, Nucl. Phys. B175, 365 (1980)
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Bootstrap relations and gluon Reggeization in NLA

It is sufficient to prove b.r. with NLO accuracy only for symmetrized production

SP = Ŝ

n+1∏

i<j=1

( si,j

|ki⊥| |kj⊥|

)αij

= e
Pn+1

i<j=1
αij(yi−yj)

(
1 + O(α2

S)
)
,

where arbitrary αij ∼ αS are only non-zero for some set of non-overlapping channels.

The following formulae complete the ground of b.r. (the second is valid only in NLO!).

1

−πi




n+1∑

l=j+1

discsj,l
−

j−1∑

l=0

discsl,j


SP =




n+1∑

l=j+1

αjl −

j−1∑

l=0

αlj


SP =

∂

∂yj

SP.
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It is sufficient to prove b.r. with NLO accuracy only for symmetrized production

SP = Ŝ
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( si,j

|ki⊥| |kj⊥|

)αij

= e
Pn+1

i<j=1
αij(yi−yj)

(
1 + O(α2

S)
)
,

where arbitrary αij ∼ αS are only non-zero for some set of non-overlapping channels.

If we prove the b.r. in perturbative calculation, it will means the proof of the Regge form
in NLA, since one can recursively calculate Regge amplitudes loop-by-loop in all orders
of coupling constant using MRK amplitudes only in the one loop approximation for
every n as an input. Indeed, b.r. express all partial derivatives of the real parts at some
number of loops through the discontinuities, calculated using the s-channel unitarity in
terms of amplitudes with a smaller number of loops. In the NLA only real parts of the
amplitudes do contribute in the unitarity relations.
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Bootstrap relations and gluon Reggeization in NLA

In order to verify that Regge form of the amplitude is the solution of b.r. equation, we
insert the Regge form of the amplitude and arrive at the ultimate form of b.r.

1

−πi




n+1∑

l=j+1

discsj,l
−

j−1∑

l=0

discsl,j


AS

2→n+2 = (ω(tj+1) − ω(tj))<A2→n+2

A B

. . . . . . . . .

sj,n+1
sj,n

sj,l

s0,j
s1,j

s2,j

J0

q1 q2 qj qj+1

J1 J2
Jj Jl Jn Jn+1

qn+1

XL PNPI Winter School, 20–26 February, 2006 – p. 7/13



Bootstrap relations and gluon Reggeization in NLA

In order to verify that Regge form of the amplitude is the solution of b.r. equation, we
insert the Regge form of the amplitude and arrive at the ultimate form of b.r.

1

−πi




n+1∑

l=j+1

discsj,l
−

j−1∑

l=0

discsl,j


AS

2→n+2 = (ω(tj+1) − ω(tj))<A2→n+2

The verification of b.r. fulfilment has some remarkable features:

It is possible to reduce all infinite set of b.r. to limited numberof restrictions, named as bootstrap

conditions, on the gluon trajectory and the Reggeon vertices.

All bootstrap conditions are demonstrated to be satisfied by the known NLO vertices and the trajectory.

Calculated separately discontinuities in the l.h.s. of the b.r. hold all the representations of colour group,

but their sum contains only colour octets in every qi–channel.
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Calculation of discontinuities

Calculation of discontinuities in the l.h.s. of the b.r. is performed by the unitarity relation.

. . .

J1
Jj−1

γ
Jj−1

Rj−1Rj

〈JjRj|

JjJ0

A

Jn

B

. . .

Jn+1

|Jn+1B〉

ĴnĴj+1

Jj+1

. . . . . .. . .

eK̂Yj+1

γ
J1

R1R2

Γ̄
R1

J0A

eK̂Yn+1

=

= − 4i(2π)D−2δ
(
q(j+1)⊥ − qj⊥ −

n+1∑

l=j

kl⊥

)
discsijA

S
2→n+2 = Γ

R1

J0A

eω(q1)(y0−y1)

q21⊥
×

×

(
j∏

l=2

γ
Jl−1

Rl−1Rl

eω(ql)(yl−1−yl)

q2l⊥

)
〈JjRj |

(
n∏

l=j+1

e
bK(yl−1−yl)Ĵl

)
e

bK(yn−yn+1)|Jn+1B〉
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V.S. Fadin, R. Fiore, M.G. Kozlov, A.V. Reznichenko, hep-ph/0602006
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Elements of the bootstrap conditions

. . .

J1
Jj−1 JjJ0

A

Jn

B

. . .

Jn+1

|Jn+1B〉

Jj+1

. . . . . .. . . BFKL kernel

G1

G2

G ′
1

G ′
2

J

= K̂∆
r

K̂ = Ω̂ + K̂r, Ω̂ = ω(r̂1) + ω(r̂2), K̂r = K̂∆
r − K̂B

r K̂B
r ∆

〈G1G2|K̂
∆
r |G′

1G
′
2〉 ∼

∑

J

∫
γJ
G1G′

1
γ
G2G

′

2

J

dφJ

2(2π)D−1

In our consideration we need only NLO octet non-forward BFKL kernel
V.S. Fadin, D.A. Gorbachev, Yad. Fiz. 63, 2253 (2000); JETP Lett., 71, 222, (2000)
NLO forward singlet BFKL kernel is the most interesting for physical applications:
V.S. Fadin, L.N. Lipatov, Phys. Lett. B429 (1998) 127
M. Ciafaloni, G. Camici, Phys. Lett. B430 (1998) 349
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. . . . . .. . . BFKL kernel
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G ′
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= K̂∆
r

K̂ = Ω̂ + K̂r, Ω̂ = ω(r̂1) + ω(r̂2), K̂r = K̂∆
r − K̂B

r K̂B
r ∆

〈G1G2|K̂
∆
r |G′

1G
′
2〉 ∼

∑

J

∫
γJ
G1G′

1
γ
G2G

′

2

J

dφJ

2(2π)D−1

In contrast to the singlet kernel our quantity is non-physical, being singular as 1
ε

in
D = 4 + 2ε regularization. The complete calculation of non-forward BFKL kernel within
NLO for arbitrary colour representation has been accomplished only recently. The
non-divergent form of its physical part has been found as well.
V.S. Fadin, R. Fiore, Phys. Rev. D 72 (2005) 014018
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Elements of the bootstrap conditions

. . .

J1
Jj−1 JjJ0

A

Jn

B

. . .

Jn+1

|Jn+1B〉

Jj+1

. . . . . .. . .

Green function

Yj = yj−1 − yj , ∆ is the collinear divergence regularizator

bG(Yj)
∆ =

∞X

n=0

yj−1−∆Z

yj+n∆

e
Ω̂(yj−1−z1)K̂∆

r dz1

z1−∆Z

yj+(n−1)∆

dz2e
Ω̂(z1−z2)K̂∆

r . . .

zn−1−∆Z

yj+∆

dzne
Ω̂(zn−yj)K̂∆

r =

=
∞∑

n=0

JnJ1 = (1 − K̂B
r ∆)Ĝ(Yj)(1 − K̂B

r ∆)

dĜ(Y )

dY
= K̂Ĝ(Y ) = Ĝ(Y )K̂, Ĝ(0) = 1 ⇒ Ĝ(Y ) = e

bKY
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Elements of the bootstrap conditions

. . .

J1
Jj−1 JjJ0

A

Jn

B

. . .

Jn+1

|Jn+1B〉

Jj+1

. . . . . .. . . Impact-factors

G1

G2

〈J0Ā| = 〈J0Ā|
∆
(
1 − K̂B

r ∆
)

〈J0Ā|G1G2〉
∆ ∼

∑

Ã

∫ (
ΓG1

ÃA
ΓG2

J0Ã
− ΓG1

J0Ã
ΓG2

ÃA

)
dφÃ

Ji

Ri G1

G2 〈JiRi| = 〈JiRi|
∆(1 − K̂B

r ∆
)

〈JiRi|G1G2〉
∆ ∼

∑

J

∫ (
γJ

RiG1
ΓG2

JiJ
− γJ

RiG2
ΓG1

JiJ

)
dφJ

V.S. Fadin, Diffraction 2002, Ed. by R. Fiore et al., NATO Science Series, Vol. 101, p.235.
J. Bartels, V.S. Fadin, R. Fiore, Nucl.Phys. B672 (2003) 329–356
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Elements of the bootstrap conditions

. . .

J1
Jj−1 JjJ0

A

Jn

B

. . .

Jn+1

|Jn+1B〉

Jj+1

. . . . . .. . . Jet production operator

Ji

G ′
1

G ′
2

G1

G2

Ĵi = Ĵ∆
i −

(
K̂B

r Ĵ B
i + Ĵ B

i K̂B
r

)
∆

〈G′
1G

′
2| bJ∆

i |G1G2〉 ∼

»
γ

Ji

G1G
′

1

δ(r2⊥ − r
′
2⊥)r2

2⊥δG2G
′

2
+ γ

Ji

G2G
′

2

δ(r1⊥ − r
′
1⊥)r2

1⊥δG1G
′

1
+

+
X

G

Z yi+∆

yi−∆

dzG

2(2π)D−1

“
γ
{JiG}

G1G
′

1

γ
G2G

′

2

G + γ
G
G1G

′

1
γ
G2G

′

2

{JiG}

”–

V.S. Fadin, Diffraction 2002, Ed. by R. Fiore et al., NATO Science Series, Vol. 101, p.235.
J. Bartels, V.S. Fadin, R. Fiore, Nucl.Phys. B672 (2003) 329–356
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Bootstrap conditions for elastic case

〈J0Ā| = gΓ
R1

J0A〈Rω(qA⊥)|

|J̄n+1B〉 = gΓ
Rn+1

Jn+1B |Rω(qB⊥)〉 G1

G2

=

M. Braun, G.P. Vacca, Phys. Lett. B477 (2000) 156
V.S. Fadin, R. Fiore, M.I. Kotsky and A. Papa, Phys. Rev. D61 (2000) 094005, 094006

K̂|Rω(q⊥)〉 = ω(q⊥)|Rω(q⊥)〉

R(q)

= ω(q⊥)×

R(q)

The following normalization g2q2
⊥

2(2π)D−1 〈Rω(q′⊥)|Rω(q⊥)〉 = −δ(q′⊥ − q⊥)ω(q⊥) is adopted.

V.S. Fadin, A. Papa, Nucl.Phys. B649 (2002) 309, hep-ph/0206079
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Bootstrap conditions for inelastic case

Ji

Ri

+

Ji

Ri

=

Ji

Ri

gq2i⊥〈Rω(qi⊥)|Ĵi + 〈JiRi| = gγJi

RiRi+1〈Rω(qi+1⊥)|; Ji = {G1G2, QQ}

V.S. Fadin, Diffraction 2002, Ed. by R. Fiore et al., NATO Science Series, Vol. 101, p.235.
V.S. Fadin, M.G. Kozlov, A.V. Reznichenko, Yad. Fiz. 67 (2004) 377–393

gq2i⊥〈Rω(qi⊥)|Ĝi + 〈GiRi| = gγGi

RiRi+1〈Rω(qi+1⊥)|

V.S. Fadin, M.G. Kozlov, A.V. Reznichenko, (2006) to be published
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Quark Reggeization in LLA

AR
2→n+2 = Γ

R1

A′A

sω1

1

d1
γP1

R1R2

sω2

2

d2
· · · γPn

RnRn+1

s
ωn+1

n+1

dn+1
Γ

Rn+1

B′B

di =




q2i⊥

m− q/i⊥

ωi =





ωG(qi), inG channel

ωQ(qi) =
g2CF

(2π)D−1

∫
(m− q/i⊥)dD−2k⊥
(m− k/⊥)(qi − k)2⊥

, inQ channel

All engaged vertices and trajectory were calculated with necessary LO accuracy:

V.S. Fadin, V.E. Sherman, Zh. Eksp. Teor. Fiz. 23 (1976), 599; 72 (1977), 1640

ωQ is known now up to two loops for arbitrary space-time dimension D:

A.V. Bogdan, V. Del Duca, V.S. Fadin and E.W.N. Glover, JHEP 203 (2002), 32
A.V. Bogdan, V.S. Fadin, Yad. Fiz. 68 (2005), 1659–1675

The proof is performed by treating LO bootstrap conditions to bootstrap relations:
A.V. Bogdan, V.S. Fadin, Nucl. Phys. B, to be published (2006), hep-ph/0601117
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Quark Reggeization in LLA

AR
2→n+2 = Γ

R1

A′A

sω1

1

d1
γP1

R1R2

sω2

2

d2
· · · γPn

RnRn+1

s
ωn+1

n+1

dn+1
Γ

Rn+1

B′B

Following vertices are calculated in NLO now:

L.N. Lipatov, M.I. Vyazovsky, Nucl. Phys. B597 (2001) 399
V.S. Fadin, R. Fiore, Phys. Rev. D64 (2001) 114012
M.I. Kotsky, L.N. Lipatov, A. Principe, Vyazovsky, Nucl. Phys. B648 (2003) 277
but two residual effective vertices RQGRQ and RGQRQ have not been obtained yet:

Their calculation will allow us to perform the proof of quark Reggeization within NLA.
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Conclusion

The gluon Reggeization is the remarkable QCD property that is very important for theoretic
description of high energy processes.

Reggeization was proved in the LLA thirty years ago.

In NLA it remained hypothesis up to date. The presented proof is based on bootstrap
relations: their fulfilment ensures the Regge form of the MRK amplitude within NLA.

Infinite number of the bootstrap relations is reduced to several bootstrap conditions for the
gluon trajectory and vertices.

All the bootstrap conditions are formulated explicitly and checked to be true by means of
calculated NLO effective vertices and gluon trajectory.

Now the Reggeization hypothesis is well-grounded in the NLA as well as in the LLA

Quark Reggeization is required by the hadron phenomenology to construct Reggeons as a
colourless states of Reggeized quarks.

This phenomenon has been recently proved in the LLA in the same bootstrap scheme.

Now the calculation of NLO vertices RQGRQ and RGQRQ is the primary task.

XL PNPI Winter School, 20–26 February, 2006 – p. 13/13



Conclusion

The gluon Reggeization is the remarkable QCD property that is very important for theoretic
description of high energy processes.

Reggeization was proved in the LLA thirty years ago.

In NLA it remained hypothesis up to date. The presented proof is based on bootstrap
relations: their fulfilment ensures the Regge form of the MRK amplitude within NLA.

Infinite number of the bootstrap relations is reduced to several bootstrap conditions for the
gluon trajectory and vertices.

All the bootstrap conditions are formulated explicitly and checked to be true by means of
calculated NLO effective vertices and gluon trajectory.

Now the Reggeization hypothesis is well-grounded in the NLA as well as in the LLA

Quark Reggeization is required by the hadron phenomenology to construct Reggeons as a
colourless states of Reggeized quarks.

This phenomenon has been recently proved in the LLA in the same bootstrap scheme.

Now the calculation of NLO vertices RQGRQ and RGQRQ is the primary task.

XL PNPI Winter School, 20–26 February, 2006 – p. 13/13



Conclusion

The gluon Reggeization is the remarkable QCD property that is very important for theoretic
description of high energy processes.

Reggeization was proved in the LLA thirty years ago.

In NLA it remained hypothesis up to date. The presented proof is based on bootstrap
relations: their fulfilment ensures the Regge form of the MRK amplitude within NLA.

Infinite number of the bootstrap relations is reduced to several bootstrap conditions for the
gluon trajectory and vertices.

All the bootstrap conditions are formulated explicitly and checked to be true by means of
calculated NLO effective vertices and gluon trajectory.

Now the Reggeization hypothesis is well-grounded in the NLA as well as in the LLA

Quark Reggeization is required by the hadron phenomenology to construct Reggeons as a
colourless states of Reggeized quarks.

This phenomenon has been recently proved in the LLA in the same bootstrap scheme.

Now the calculation of NLO vertices RQGRQ and RGQRQ is the primary task.

XL PNPI Winter School, 20–26 February, 2006 – p. 13/13



Conclusion

The gluon Reggeization is the remarkable QCD property that is very important for theoretic
description of high energy processes.

Reggeization was proved in the LLA thirty years ago.

In NLA it remained hypothesis up to date. The presented proof is based on bootstrap
relations: their fulfilment ensures the Regge form of the MRK amplitude within NLA.

Infinite number of the bootstrap relations is reduced to several bootstrap conditions for the
gluon trajectory and vertices.

All the bootstrap conditions are formulated explicitly and checked to be true by means of
calculated NLO effective vertices and gluon trajectory.

Now the Reggeization hypothesis is well-grounded in the NLA as well as in the LLA

Quark Reggeization is required by the hadron phenomenology to construct Reggeons as a
colourless states of Reggeized quarks.

This phenomenon has been recently proved in the LLA in the same bootstrap scheme.

Now the calculation of NLO vertices RQGRQ and RGQRQ is the primary task.

XL PNPI Winter School, 20–26 February, 2006 – p. 13/13



Conclusion

The gluon Reggeization is the remarkable QCD property that is very important for theoretic
description of high energy processes.

Reggeization was proved in the LLA thirty years ago.

In NLA it remained hypothesis up to date. The presented proof is based on bootstrap
relations: their fulfilment ensures the Regge form of the MRK amplitude within NLA.

Infinite number of the bootstrap relations is reduced to several bootstrap conditions for the
gluon trajectory and vertices.

All the bootstrap conditions are formulated explicitly and checked to be true by means of
calculated NLO effective vertices and gluon trajectory.

Now the Reggeization hypothesis is well-grounded in the NLA as well as in the LLA

Quark Reggeization is required by the hadron phenomenology to construct Reggeons as a
colourless states of Reggeized quarks.

This phenomenon has been recently proved in the LLA in the same bootstrap scheme.

Now the calculation of NLO vertices RQGRQ and RGQRQ is the primary task.

XL PNPI Winter School, 20–26 February, 2006 – p. 13/13



Conclusion

The gluon Reggeization is the remarkable QCD property that is very important for theoretic
description of high energy processes.

Reggeization was proved in the LLA thirty years ago.

In NLA it remained hypothesis up to date. The presented proof is based on bootstrap
relations: their fulfilment ensures the Regge form of the MRK amplitude within NLA.

Infinite number of the bootstrap relations is reduced to several bootstrap conditions for the
gluon trajectory and vertices.

All the bootstrap conditions are formulated explicitly and checked to be true by means of
calculated NLO effective vertices and gluon trajectory.

Now the Reggeization hypothesis is well-grounded in the NLA as well as in the LLA

Quark Reggeization is required by the hadron phenomenology to construct Reggeons as a
colourless states of Reggeized quarks.

This phenomenon has been recently proved in the LLA in the same bootstrap scheme.

Now the calculation of NLO vertices RQGRQ and RGQRQ is the primary task.

XL PNPI Winter School, 20–26 February, 2006 – p. 13/13


	Contents
	
ormalsize Multi-peripheral kinematics
	
ormalsize Hypothesis of the gluon Reggeization
	
ormalsize Hypothesis of the gluon Reggeization
	
ormalsize Hypothesis of the gluon Reggeization
	
ormalsize Hypothesis of the gluon Reggeization
	
ormalsize Hypothesis of the gluon Reggeization
	
ormalsize Hypothesis of the gluon Reggeization
	
ormalsize Hypothesis of the gluon Reggeization

	
ormalsize The method of the Reggeization proof
	
ormalsize Bootstrap relations and gluon Reggeization in NLA
	
ormalsize Bootstrap relations and gluon Reggeization in NLA

	
ormalsize Bootstrap relations and gluon Reggeization in NLA
	
ormalsize Bootstrap relations and gluon Reggeization in NLA

	
ormalsize Calculation of discontinuities 
	
ormalsize Calculation of discontinuities 
	
ormalsize Calculation of discontinuities 

	
ormalsize Elements of the bootstrap conditions
	
ormalsize Elements of the bootstrap conditions
	
ormalsize Elements of the bootstrap conditions
	
ormalsize Elements of the bootstrap conditions
	
ormalsize Elements of the bootstrap conditions

	
ormalsize Bootstrap conditions for elastic case
	
ormalsize Bootstrap conditions for inelastic case
	Quark Reggeization in LLA
	Quark Reggeization in LLA

	
ormalsize Conclusion
	
ormalsize Conclusion
	
ormalsize Conclusion
	
ormalsize Conclusion
	
ormalsize Conclusion
	
ormalsize Conclusion


