NANOSTRUCTURE OF NUCLEAR POWER PLANTS MATERIALS

V.T.Lebedev¹, Gy.Torok², V.M.Lebedev¹, A.N.Lapin³, V.A.Petrov³, B.Z.Margolin³

¹ Petersburg Nuclear Physics Institute, 188300 Gatchina, Leningrad distr., Russia

- ² Research Institute for Solid State Physics and Optics, Budapest, Konkoly -Thege st. 29-33, Hungary
- ³Central Research Institute for Materials' Design "Prometey", 193015 St.Petersburg., Shpalernaya st. 49

Fractography

•Optical & electron microscopy

damages at surface, in thin layer - final stage of fracture

•Volume Nanosructures - structural changes before the fracture

SANS

Metals and alloys (thick layers ~ cm)
except of elements with high absorption (Cd, Gd, B, Li etc.)

- X-rays are strongly damped in metals
- Isotopic contrast for structural elements
- Polarized neutrons: nuclear and magnetic structures
- (magneto-elastic effects, magnetic inclusions)
- Wavelength variation: λ = 0.2-2 nm
- Multidetectors
- scales ~ $1-10^3$ nm:
- point defects, dislocations, precipitates, pores and cracks

Welded joint scanned by neutron beam SANS on base and welded metal

Scan over welded joint SANS, Neutron beam diameter = 2 mm, λ =0.609 HM, $\Delta\lambda/\lambda$ =0.1

Plate 150x100x3.5 mm³ of stainless steel Central region of welded metal Step = 5 mm, Line - 24 positions Distance between lines = 10 mm (9 lines)

Steel 08H18N10T austenite stainless (100 mm) welded by the wire (3 mm in diameter, steel 04H19N18M3 (welding in electric arc using flux 48-OF-6).

Thermal treatment

Cooling down in water from the temperature 1050°C Precipitation of carbides: TiC in base metal and TiC и Cr23C6 near the joint border and interior the joint.

Chemical composition

Table 1. Base metal: steel 08H18N10T (wt.%).

Element	C	Si	Mn	S	Р	Cr	Ni	Ti
Concentration	0.07	0.45	0.94	0.015	0.020	18.04	9.97	0.61

Table 2. Welded metal: steel 04H19N18M3 (wt.%).

Element	C	Cr	Ni	Mn
Concentration	≤0.4	18-20	10-12	3.25-3.50

transmission

mm

Line 1. Cross sections Positions: 1, 24 - base metal, 12 - middle of joint.

Line 9. Cross sections Positions: 1, 24 - base metal, 12 - middle of joint


```
SANS at 20°C
q=0.07-0.7 nm<sup>-1</sup>, 2D-detector (BF<sub>3</sub>, 64x64cm<sup>2</sup>)
```

Transmission Tr \sim 70 %

Isotropic scattering, averaging over circles |**q**|=const

Inhomogeneities $r \ge 10 \text{ nm}$

Joint metal is more homogeneous than base metal !

Scattering from the joint material is lower by factor 2-3 as compared to base metal, q~0.1 nm⁻¹

Scattering from base metal and welded joint 3-component Guinier model

 $\sigma(q) = I_{01} \exp[-q^2Rg1^2/3] + I_{02} \exp[-q^2Rg2^2/3] + B$

Fractions: $Rg_1 \ \mu \ Rg_2$, defects $\leq 1 \ nm$ (nuclei, vacancies)

Forward cross sections $I_{01,2} = K_{1,2}^2 N_{1,2} V_{1,2}^2$ V _{1,2} = $(4\pi/3)R_{1,2}^3$, spherical approximation radii R _{1,2} = $(5/3)^{1/2}$ Rg _{1,2}.

In base and joint metal defects' numbers differ strongly Their dimensions do not show significant deviations !

Line 9: Guinier model

Line 1: A),B) and C),D) - forward cross sections and radii of big and middle particles E). "incoherent" cross section of tiny defects

Line 5 - center of joint: A),B) and C),D) - forward cross sections and radii of big and middle particles; E). "incoherent" cross section

Line 9: A),B) and C),D) - forward cross sections and radii of big and middle particles; E). "incoherent" cross section

Nanoscale structure Base and joint metal

- Big defects in base metal, Rg1=20-22 nm
- Interior the joint the radius is larger by $\sim 10 \%$
- Middle defects, Rg2 = 7-9 nm
- Interior the joint their size is smaller by ~10%
- Cross sections for big and middle particles are lower by factor ~ 5 interior the joint as compared to base metal
- In joint metal cross section of tiny defects ~ nuclear incoherent cross section
- Base metal: additional point defects !
- Border of joint: "islands" of high concentration of point defects !

Forward cross section I₀₁ for big defects

Gyration radius of big defects

Middle defects' cross section

Gyration radius of middle defects

Cross section of "point" defects

Carbides C_6Cr_{23} can be localized at grain borders Monolayers at the borders of crystalline blocks Scattering angles $\sim \lambda/D$

Layer thickness $D = 2R_{g1}/\sqrt{3} \sim 24 \text{ nm} \sim \text{middle}$ particle diameter $2R_{g2} \sim 18 \text{ nm}$

Middle particles can form layers at blocks' borders Number of particles in such a lamella In base metal $nB=(I_{01}/I_{02})=29$ In joint metal $nw=(I_{01}/I_{02})=35$ Lamella size $\sqrt{n}\cdot R_{g2} \sim 100$ nm ~ size of cristalline block

Carbides grouping at blocks' borders

Content of C₆Cr₂₃

fcc, unit cell: 92 atoms of Cr, 24 atoms of C
 Lattice constant a = 1.051-1.073 nm
 Carbide density ρ=7.07g/cm³

Nuclear scattering length density Kc=4.15·10¹⁰cm⁻²
 Iron: KFe=7.9·10¹⁰cm⁻²

- Carbides have negative contrast in metal matrix
- ▲К= -3.8·10¹⁰ см⁻²

•Carbides content: $\varphi_B = 0.12$ % vol. in base metal • $\varphi_W = 0.023$ % in welded metal.

Mass of carbon precipitated 0.047 % wt. in base metal
5 times lower than the amount of precipitated carbon in welded metal, 0.0090 % wt.

70 % of carbon in base metal is precipitated
 The SANS is sensitive even to inclusions amount ~ 10⁻² % vol.

- 1. V.T.Lebedev, A.N.Lapin, V.I.Didenko, K.A.Konoplev, D.N.Orlova, Gy.Torok, E.Retfalvi, Opportunities of investigations of strength and fracture problems of constructional materials by SANS, The 7th Conference of material issues in design manufacturing and operation of nuclear power plants equipment, 17-21 June, 2002, St.Petersburg / Conference proceedings sec.1, pp.248-259.
- 2. V.Lebedev, V.Didenko, A.Lapin, K.Konoplev, D.Orlova, Gy.Torok, E.Retfalvi, Small-angle neutron scattering investigation of plastically deformed steel, J.Appl. Cryst. (2003) v.36, pp.629-631.
- 3. Botchvar A.A. Material Science, Moscow: State Sci&Techn. Publishers for Metalurgy, 1956, 495 p.
- 4. Parshin A.M., Structure and strength and plasticity of stainless and heat-resistant steels and alloys used in shipbuilding. - Leningrad: "Shipbuilding publishers", 1972, 288 p.
- 5. Svergun D.I., Feigin L.A., X-ray and neutron small-angle scattering, Moscow: "Nauka-publishers", 1986, 279 p.

Available online at www.sciencedirect.com

SCIENCE

Physica B 358 (2005) 224-231

www.elsevier.com/locate/physb

SANS study of the precipitates microstructural evolution in Al 4032 car engine pistons

M. Rogante^{a,*}, V.T. Lebedev^b, F. Nicolaie^c, E. Rétfalvi^d, L. Rosta^d

^aRogante Engineering Office, NDT, Contrada San Michele, n. 61, P.O. Box 189, 62012 Civitanova Marche, Italy ^bPetersburg Nuclear Physics Institute, Gatchina, St. Petersburg, Russia ^cFerrari Gestione Sportiva, Gruppo Metallurgia, Via Ascari, 55/57, 41053 Maranello, Italy ^dResearch Institute for Solid State Physics and Optics, Budapest, H-1525, POB.49, Hungary

Received 30 November 2004; received in revised form 10 January 2005; accepted 11 January 2005

Engine of tracing car

- SANS study of precipitates in piston
 - AlSiCuNiMg alloy

SANS from 5 points of new (old) piston's crown

- Center of new sample:isotropic scattering
- Lateral parts: anisotropic scattering (texture created by manufacturing)
- Alloy's mechanical properties are sensitive to thermal treatment
- Operating temperature is close and in certain parts of the crown exceeds the aging temperature
- Aging alters mechanical properties related to precipitates structural changes

Long-term exploitation under thermal and mechanical stresses in cars' engine

 AI 4032 is basically a forging alloy
 SANS examination of material to find the precursors of fracture

Scientific background Neutron studies

Plastic deformation: huge scattering (Cu, Al, Ni) [4-6] Cracks, precipitates ~ 100 nm in fracture zone [6] Polycrystalline Cu, Ni, Fe: $I(q) \sim 1/q^{D}$, D = 2.5 - 3.5 [2] $D \sim 2$ for dislocation loop, $D=3\pm0.5$ for groups Grouping creates interior surfaces, voids, crystal borders, cracks $3 < D \leq 4$, D = 4 for sharp defect's border ! [4]. Electron microscopy: surface, thin slices [1] Nuclear (magnetic) scattering on dislocations Dislocations' densities found from cross section

Residual hardness measurements on piston crown after operation

Temperature of crown, exceeding the aging temperature, causes a coalescence of hardener elements: **AICu, AIMg, AIMgCu** precipitation

Evaluation of shape and size of precipitates:

- 1. Location the areas of maximum thermal alteration
- 2. Measurement of alteration rate

M. Rogante et al. / Physica B 358 (2005) 224–231

Table 1

Composition of Al-based alloy and scattering lengths for nuclei

Element	Si	Fe	Cu	Mg	Cr	Ni	Zn
at % $b (10^{-12} \text{ cm})$	11.0-13.5	≤1.0	0.5–1.3	0.8–1.3	≤0.1	0.5–1.3	≤0.25
	0.415	0.945	0.772	0.538	0.364	1.03	0.568

Remainder each (0.05% max.), remainder total (0.15% max.).

SANS from the piston crown: central position

SANS-patterns for central point $\sigma(q) = d\sigma/d\Omega$ per cm^{3,} $\lambda = 1.224$ nm q=0.05-1.2nm⁻¹, scale r ~ 1/q=1-20nm

- σ(q) increase by factor 2 after operation
 R(q) = I_{OLD}/I_{NEW} has a maximum
 at q=0.05-0.2 nm⁻¹
- Thermal treatment causes the growth of defects r~1/q~5-10 nm
- Scattering became weaker at q ~ 1 nm: annealing of small defects (vacancies)

Gain in scattering after operation: $R(q) = I_{OLD}/I_{NEW}$

Porod plot for new and old piston: central position

Porod plot *I(q)·q*⁴vs. *q*⁴

Separation structural effects from incoherent scattering and point defects contribution

New and old piston obey the law: I·q⁴ = A + B·q⁴

• $\mathbf{A} = 2\pi (\Delta \mathbf{K})^2 \cdot \mathbf{S}_t$

Total area of particles, for spheres:

 $S_t = 4\pi R_P^2 N_P$

 $\boldsymbol{R}_{\boldsymbol{P}}$ is the radius, $\boldsymbol{N}_{\boldsymbol{P}}$ is the number of particles in the sample

Parameter B - incoherent cross section

Aging increase the surface by ~20 % (precipitates growth) and decrease incoherent background by ~15 % (annealing of vacancies)

Range of contract factors for different precipitates

 $\Delta K^2 = (0.4 - 1.7) 10^{20} \text{ cm}^{-4}$

Interior surface gain
∆S_t ~(4-16)·10² cm²

Volume content of precipitates vs. radius: A). new; B) old material; C). Difference Φ_{Kold} - Φ_{Knew}

[1] D. Broek, Elementary engineering fracture mechanics, Leyden (1974).

[2] W. Schmatz, Neutron Small-Angle Scattering from Dislocations, Rivista del Nuovo Cimento (1975), 5, 3 398.

[3] A. Seeger, E. Kroner, Theorie der Kleinwinkelstreuung von Rontgen- Strahlen Und Neutronen durch innere Spannungen in festen Korpern, insbesondere durch Versetzungen, Zeitschrift für Naturforschung, (1959) A14, 74.

[4] N. M. Okuneva, V. E. Zhitarev, V. N. Savelyev, S. B. Stepanov, A. I. Slutsker, Small angle scattering of cold neutrons in metals, Phys. of the Solid State, (1976), 18, 12 3682.

[5] V. E. Zhitarev, N. M. Okuneva, V. S. Ryskin, A. I. Slutsker, S.B.Stepanov, Small angle scattering of cold neutrons in deformed metals, Phys. of the Solid State (1981), 23, 92681.

[6] L. Cser, I. Kovach, N. Kroo, and G. Zsigmond, Small-angle Neutron Scattering Study of Metallic Alloys by a Double Crystal Device, Preprint FKFI 1982-35, Budapest (1982).

СТРУКТУРА РАДИАЦИОННЫХ ДЕФЕКТОВ В КВАРЦЕ

СИНТЕТИЧЕСКИЙ КВАРЦ

$p = 54 \text{ cm}^{-2}$

р= 570 см⁻²

ДЫМЧАТЫЙ КВАРЦ

ГОРНЫЙ ХРУСТАЛЬ

Синтетический кварц,

плотность дислокаций ρ = 54 см⁻², ρ = 570 см⁻² Природные - дымчатый кв. и горный хрусталь

Нейтроны, En > 0.1 МэВ: $\Phi = 2 \cdot 10^{16} - 5.0 \cdot 10^{18}$ н/см²

 $\Phi = 2 \cdot 10^{16}$ н/см²: нет изменений структуры

искусственного кварца !

Природные образцы: заметное число дефектов

• Укрупнение за счет слияния при увеличении флюенса !

Синтетический кварц: $\Phi = 8 \cdot 10^{17} - 5.0 \cdot 10^{18}$ н/см² Генерация дефектов, rg ~1-2 нм и R_G ~ 40-50 нм Рост числа и объемной доли дефектов. Крупные дефекты R_G ~ 40-50 нм - начало аморфизации! Образование линейных дефектов – каналов радиусом ~ 2 нм в синтетическом кварце Кварциты - основная часть земной коры Роль дефектов в миграции газовых потоков (гелия, трития) к поверхности Земли

- Дефекты, исходные и индуцированные радиационными, термическими, механическими нагрузками - ловушки элементов, в т. ч. радиоактивных (радон)
- Модификация кварцев облучением протонами, нейтронами, электронами, ү-квантами для получения функциональных материалов с необходимыми характеристиками (проблема захоронения отходов в глубинных кварцевых породах при условии выяснения их радиационной стойкости)
- Для модификации вещества в объеме наиболее эффективны быстрые нейтроны, способные создать нужную дефектную структуру в объеме кварца

Кварц – одна из кристаллических модификаций двуокиси кремния SiO₂ (кремнезема), имеющего несколько разновидностей

Разновидность	Температурная область
кремнезема	устойчивости
α-кварц	T < 573° C
(низкотемпературный).	при нормальном давлении
β-кварц	$573^{\circ}C < T < 880^{\circ}C$
(высокотемпературный)	
Тридимит	$880^{\circ}C < T < 1470^{\circ}C$
Кристобалит	$1470^{\circ}C < T < 1710^{\circ}C$

Плотность α-кварца ρ=2.649 г/см³

Твердость по десятибальной шкале равна 7

Кварц прозрачен для УФ и частично ИК-излучений !

Основные прозрачные разновидности α-кварца

Вид	Цвет	Примеси
Синтетический	Бесцветный	Обычно А1
Горный хрусталь	Бесцветный	Если отсутствуют примеси Ті, Fe и центры окраски.
Раухтопаз (дымчатый)	Дымчатый	Замена атомов Si на атомы Al
Аметист	Фиолетовый	Fe ³⁺ (желто-образующий), Fe ²⁺ (зелено-образующий)
Морион	От черного до зеленовато- желтого	Al
Цитрин	Красноватый	Fe ³⁺

Quartz has two polymorphs Alpha quartz is trigonal and stable below 573 C Above 573 C the structure inverts to beta quartz, which is hexagonal

 α -кварц $c_0 = 5.393$ Å $a_0 = 4.903$ Å 1, 2, 3, 4 – положения Si

Нейтрон может выбить атом из узла в междоузлие Образуется френкелевская пара «междоузельный атом-вакансия»

Выбитые атомы О и Si, получив большую энергию, вызвают локальные повреждения решетки, генерируют крупные дефекты

Максимум распределения смещенных атомов вдоль пробега -на расстоянии 36 -130 нм для выбитых ионов кислорода с энергиями от 20-100 кэВ

- 18-80 нм для ионов кремния с энергиями от 20-100 кэВ

Расстояния между смещенными атомами малы Создается область разупорядоченной решетки

- «пики смещения»

При облучении кристаллов нейтронами возникают точечные дефекты («выбитый атом - вакансия») и «пики смещения»

Нейтронное облучение ведет к образованию смещенных атомов числом на 2-3 порядка больше количества смещений, вызванных у-лучами

γ-излучение - стимулированная диффузия точечных дефектов, отжиг и коагуляции точечных дефектов

- Облучение α-кварца быстрыми нейтронами (>10¹⁹ н/см²)
- Радиационный α→β переход
 Области плавления «пики смещения» зародыши другой фазы ~1.5–3.0 нм остывают до средней температуры мишени за 10⁻¹⁰ –10⁻¹¹ с
- Вокруг расплавленного объема
 - области механических напряжений

Полная аморфизация, Ф = 1·10²⁰-2·10²⁰н/см² Большое количество разорванных Si-O -связей

Фазовый переход α→β - начало аморфизации

- Индукционный периодом формирования зародыша 10-4 10-8 с
- Объем «пика смещения»
- Критический флюенс зависит от структуры и состава кристалла (разные типы кварца имеют различные примеси)

Механизм образования зародышей аморфизации при малых флюенсах ? Образцы кварца 1x1x1 см³ с разной плотностью дефектов:

Синтетические кристаллы

• низкая плотностью дислокаций $\,\rho{=}54$ см^-2, $\rho{=}570$ см^-2

Горный хрусталь и дымчатый кварц

• различные дефекты -вакансии, дислокации, границы кристаллитов

Канал В1 реактора ВВРМ, **60°С**

Плотность потока быстрых нейтронов $\phi = 2 \cdot 10^{10} \text{ н/см}^2$ Флюенсы:

$$D_1 = 2 \cdot 10^{16} \text{ H/cm}^2$$
, $D_2 = 8 \cdot 10^{17} \text{ H/cm}^2$,

 $D_3 = 2 \cdot 10^{18} \text{ H/cm}^2$, $D_4 = 5 \cdot 10^{18} \text{ H/cm}^2$

Надатомная структура

«МЕМБРАНА-2», метод малоуглового рассеяния нейтронов

 $\lambda = 0.3$ HM, $\Delta \lambda / \lambda = 0.3$

диапазон импульсов $q = (4\pi/\lambda)\sin(\theta/2) = 0.03 - 0.8$ нм⁻¹

θ - угол рассеяния нейтронов

Спектр быстрых (E_n > 0.1 МэВ) нейтронов в канале В1 реактора ВВРМ

МЕМБРАНА-2

Р – поляризатор, W – магнитный монохроматор, F - флиппер,

А – анализатор, S – образец, D – детектор (41 Не³-счетчик)

Горный хрусталь Разностные спектры

Дымчатый кварц - разностные спектры

Синтетический кварц, р=54 см-2

 $\Delta I(q) = I_0 \cdot \exp[-(q \cdot R_g)^2/3] + q^{-1}A \cdot \exp[-(q \cdot r_g)^2/2] + B$

Синтетический кварц, $\rho = 570 \text{ см}^{-2}$ $\Delta I(q) = I_0 \cdot \exp[-(q \cdot R_g)^2/3] + q^{-1}A \cdot \exp[-(q \cdot r_g)^2/2] + B$

Интенсивность рассеяния І, на крупных дефектах

Концентрации и объемные доли дефектов в зависимости от флюенса (N, φ)

Плотность длины когерентного ядерного рассеяния α -кварца (d = 2.65 г/см³): K = N_mb_m = 4.19·10¹⁰см⁻² $N_m = 2.66 \cdot 10^{22} \text{ см}^{-3}$ - число молекул SiO₂ в см³ b_m=1.58·10⁻¹²см - когерентная длина молекулы Контраст для крупных дефектов $\Delta K = (\Delta d/d) \cdot K$ ∆d/d = 10 % - изменение плотности из-за радиационных повреждений $\sigma = (\Delta K)^2 \cdot N \cdot V^2 = (\Delta K)^2 \cdot \phi \cdot V$ $V = (4\pi/3)R^3$ - объем дефекта Отсюда найдены концентрации и объемные доли дефектов Характеристики крупных дефектов в облученном кварце с начальной плотностью дислокаций $\rho = 54 \ \text{сm}^{-2}$

Флюенс,	Сечение	Радиус кластеров,	Концентрация	Объемная
x10 ¹⁷	σ, cm ⁻¹	R, нм	кластеров	доля
н/см ²			N , 10 ¹² см ⁻³	φ, %
0.2	1.39 ±0.33	28.8 ±3.6	7.9	0.079
7.7	5.74 ±0.16	52.2±0.7	0.92	0.055
18	10.15 ±0.42	61.6 ±1.0	0.60	0.059
50	4.49 ±0.12	29.0 ±0.5	24.5	0.25

Характеристики крупных дефектов в облученном кварце с начальной плотностью дислокаций ρ = 570 см⁻²

Доза, x10 ¹⁷ н/см ⁻²	Сечение σ, см ⁻¹	Радиус кластеров R, нм	Концентрация кластеров N, 10 ¹² см ⁻³	Объемная доля ф, %
0.2	0.043 ±0.040	16.0 ±9.7	8.3	0.014
7.7	1.23 ±0.07	33.6±0.9	2.8	0.044
18	3.54 ±0.08	42.9 ±0.6	1.8	0.061
50	19.6 ±1.0	46.6 ±1.1	6.3	0.26

Дефекты локализуются на дислокациях и не коагулируют При большем числе дислокаций дефекты более мелкие Сохраняется суммарный объем дефектов

Характеристики точечных дефектов в облученном искусственном кварце

Флюенс, 10 ¹⁷ н/см ⁻²	Сечение σ _р , см	r ⁻¹ ,	Объемная доля «точечных» дефектов ф, %		
	$\rho = 54 \text{ cm}^{-2}$	$\rho = 570 \text{ см}^{-2}$	$\rho = 54 \text{ cm}^{-2}$	$\rho = 570 \text{ см}^{-2}$	
0.2	_	0.0044 ± 0.0040	-	0.3	
7.7	0.007 ± 0.005	0.024±0.006	0.4	1	
18	0.020 ± 0.004	0.056 ±0.004	1	3	
50	0.024 ± 0.004	0.073 ±0.005	1	4	

Линейные радиационные повреждения A = $\pi \cdot \Delta K_{L}^{2} \cdot V_{L}^{2} N_{L}/L$, ΔK_L=0.1·K - контраст, $L - длина, V_L = \pi r^2 L$ - объем, N_L - число каналов в см³ Параметр Объемная доля Флюенс, Суммарная длина, А, 10⁴ см⁻² $L_{\rm T}$, 10^{10} cm/cm³ 10^{17}H/cm^{-2} каналов $\phi_L, \%$ $\rho = 54 \text{ cm}^{-2}$ 0.2 7.7 5.4 ± 2.5 6.2 ± 2.8 0.8 ± 0.4 18 8.8 ± 1.8 10.1 ± 2.1 1.3 ± 0.3 50 11.7 ± 1.8 13.4 ± 2.1 1.7 ± 0.3 А, 10⁴ см⁻² Суммарная длина, Флюенс, Объемная доля L_{T} , 10¹⁰ cm/cm³ 10^{17} H/cm⁻² каналов ϕ_L , % $\rho = 570 \text{ cm}^{-2}$ 0.2 7.7 8.9 ± 2.5 10.2 ± 2.9 1.3 ± 0.4 18 4.5 ± 2.0 5.1 ± 2.3 0.6 ± 0.3 50 7.9 ± 2.3 9.0 ± 2.6 1.1 ± 0.3

Заключение

- Крупные дефекты размером 40-50 нм занимают объем ~ 0.3 % при флюенсе 5.10¹⁸ н/см⁻²
- Основной объем повреждений ~ 5 % приходится на точечные и линейные дефекты (вклады 1-4 %)
- 3. Радиационные каналы радиусом ~ 2 нм имеют интегральную длину $L_T \sim 10^{11}~{\rm cm/cm^3}$ при умеренном флюенсе $8\cdot 10^{17}{\rm h/cm^{-2}}$
- 4. Каналы длиной L₁ могут образовать «протекаемую» сетку (на связь приходится объем L₁³) суммарной длиной $L_T \sim 10^{11}$ см/см³ = L₁/ L₁³, где длина связи равна L₁ ~ 1/ $\sqrt{L_T}$ ~ 30 нм
- 5. Максимум распределения смещенных атомов вдоль пробега в кварце находится на расстоянии 36 -130 нм для выбитых ионов кислорода и 18-80 нм для ионов кремния, поэтому образование связной сетки с длиной шага ~ 30 нм реально !

