
CVS Client/Server

This document describes the client/server protocol used by CVS. It does not describe
how to use or administer client/server CVS; see the regular CVS manual for that. This is
version 1.10 of the protocol speci�cation|See Chapter 1 [Introduction], page 2, for more
on what this version number means.

1 Introduction

CVS is a version control system (with some additional con�guration management func-
tionality). It maintains a central repository which stores �les (often source code), including
past versions, information about who modi�ed them and when, and so on. People who
wish to look at or modify those �les, known as developers, use CVS to check out a working

directory from the repository, to check in new versions of �les to the repository, and other
operations such as viewing the modi�cation history of a �le. If developers are connected to
the repository by a network, particularly a slow or
aky one, the most e�cient way to use
the network is with the CVS-speci�c protocol described in this document.

Developers, using the machine on which they store their working directory, run the CVS
client program. To perform operations which cannot be done locally, it connects to the CVS
server program, which maintains the repository. For more information on how to connect
see Chapter 3 [Connection and Authentication], page 4.

This document describes the CVS protocol. Unfortunately, it does not yet completely
document one aspect of the protocol|the detailed operation of each CVS command and
option|and one must look at the CVS user documentation, `cvs.texinfo', for that infor-
mation. The protocol is non-proprietary (anyone who wants to is encouraged to implement
it) and an implementation, known as CVS, is available under the GNU Public License.
The CVS distribution, containing this implementation, `cvs.texinfo', and a copy (possibly
more or less up to date than what you are reading now) of this document, `cvsclient.texi',
can be found at the usual GNU FTP sites, with a �lename such as `cvs-version.tar.gz'.

This is version 1.10 of the protocol speci�cation. This version number is intended only
to aid in distinguishing di�erent versions of this speci�cation. Although the speci�cation
is currently maintained in conjunction with the CVS implementation, and carries the same
version number, it also intends to document what is involved with interoperating with other
implementations (such as other versions of CVS); see Section 5.14 [Requirements], page 28.
This version number should not be used by clients or servers to determine what variant of
the protocol to speak; they should instead use the valid-requests and Valid-responses

mechanism (see Chapter 5 [Protocol], page 7), which is more
exible.

2 Goals

� Do not assume any access to the repository other than via this protocol. It does not
depend on NFS, rdist, etc.

� Providing a reliable transport is outside this protocol. The protocol expects a reliable
transport that is transparent (that is, there is no translation of characters, including
characters such as such as linefeeds or carriage returns), and can transmit all 256 octets
(for example for proper handling of binary �les, compression, and encryption). The
encoding of characters speci�ed by the protocol (the names of requests and so on) is
the invariant ISO 646 character set (a subset of most popular character sets including
ASCII and others). For more details on running the protocol over the TCP reliable
transport, see Chapter 3 [Connection and Authentication], page 4.

� Security and authentication are handled outside this protocol (but see below about
`cvs kserver' and `cvs pserver').

� The protocol makes it possible for updates to be atomic with respect to checkins; that
is if someone commits changes to several �les in one cvs command, then an update by
someone else would either get all the changes, or none of them. The current cvs server
can't do this, but that isn't the protocol's fault.

� The protocol is, with a few exceptions, transaction-based. That is, the client sends all
its requests (without waiting for server responses), and then waits for the server to send
back all responses (without waiting for further client requests). This has the advantage
of minimizing network turnarounds and the disadvantage of sometimes transferring
more data than would be necessary if there were a richer interaction. Another, more
subtle, advantage is that there is no need for the protocol to provide locking for features
such as making checkins atomic with respect to updates. Any such locking can be
handled entirely by the server. A good server implementation (such as the current
cvs server) will make sure that it does not have any such locks in place whenever it is
waiting for communication with the client; this prevents one client on a slow or
aky
network from interfering with the work of others.

� It is a general design goal to provide only one way to do a given operation (where
possible). For example, implementations have no choice about whether to terminate
lines with linefeeds or some other character(s), and request and response names are
case-sensitive. This is to enhance interoperability. If a protocol allows more than one
way to do something, it is all too easy for some implementations to support only some
of them (perhaps accidentally).

3 How to Connect to and Authenticate Oneself to
the CVS server

Connection and authentication occurs before the CVS protocol itself is started. There
are several ways to connect.

server If the client has a way to execute commands on the server, and provide input
to the commands and output from them, then it can connect that way. This
could be the usual rsh (port 514) protocol, Kerberos rsh, SSH, or any similar
mechanism. The client may allow the user to specify the name of the server
program; the default is cvs. It is invoked with one argument, server. Once it
invokes the server, the client proceeds to start the cvs protocol.

kserver The kerberized server listens on a port (in the current implementation, by
having inetd call "cvs kserver") which defaults to 1999. The client connects,
sends the usual kerberos authentication information, and then starts the cvs
protocol. Note: port 1999 is o�cially registered for another use, and in any
event one cannot register more than one port for CVS, so GSS-API (see below)
is recommended instead of kserver as a way to support kerberos.

pserver The name pserver is somewhat confusing. It refers to both a generic framework
which allows the CVS protocol to support several authentication mechanisms,
and a name for a speci�c mechanism which transfers a username and a clear-
text password. Servers need not support all mechanisms, and in fact servers
will typically want to support only those mechanisms which meet the relevant
security needs.

The pserver server listens on a port (in the current implementation, by having
inetd call "cvs pserver") which defaults to 2401 (this port is o�cially registered).
The client connects, and sends the following:

� the string `BEGIN AUTH REQUEST', a linefeed,

� the cvs root, a linefeed,

� the username, a linefeed,

� the password trivially encoded (see Chapter 4 [Password scrambling],
page 6), a linefeed,

� the string `END AUTH REQUEST', and a linefeed.

The client must send the identical string for cvs root both here and later in
the Root request of the cvs protocol itself. Servers are encouraged to enforce
this restriction. The possible server responses (each of which is followed by
a linefeed) are the following. Note that although there is a small similarity
between this authentication protocol and the cvs protocol, they are separate.

I LOVE YOU

The authentication is successful. The client proceeds with the cvs
protocol itself.

I HATE YOU

The authentication fails. After sending this response, the server
may close the connection. It is up to the server to decide whether

to give this response, which is generic, or a more speci�c response
using `E' and/or `error'.

E text Provide a message for the user. After this reponse, the authentica-
tion protocol continues with another response. Typically the server
will provide a series of `E' responses followed by `error'. Compat-
ibility note: cvs 1.9.10 and older clients will print unrecognized
auth response and text, and then exit, upon receiving this re-
sponse.

error code text

The authentication fails. After sending this response, the server
may close the connection. The code is a code describing why it
failed, intended for computer consumption. The only code currently
de�ned is `0' which is nonspeci�c, but clients must silently treat any
unrecognized codes as nonspeci�c. The text should be supplied to
the user. Compatibility note: cvs 1.9.10 and older clients will
print unrecognized auth response and text, and then exit, upon
receiving this response.

If the client wishes to merely authenticate without starting the cvs protocol,
the procedure is the same, except BEGIN AUTH REQUEST is replaced with
BEGIN VERIFICATION REQUEST, END AUTH REQUEST is replaced with
END VERIFICATION REQUEST, and upon receipt of I LOVE YOU the con-
nection is closed rather than continuing.

Another mechanism is GSSAPI authentication. GSSAPI is a generic interface
to security services such as kerberos. GSSAPI is speci�ed in RFC2078 (GSSAPI
version 2) and RFC1508 (GSSAPI version 1); we are not aware of di�erences
between the two which a�ect the protocol in incompatible ways, so we make
no attempt to specify one version or the other. The procedure here is to start
with `BEGIN GSSAPI REQUEST'. GSSAPI authentication information is then ex-
changed between the client and the server. Each packet of information consists
of a two byte big endian length, followed by that many bytes of data. After
the GSSAPI authentication is complete, the server continues with the responses
described above (`I LOVE YOU', etc.).

future possibilities
There are a nearly unlimited number of ways to connect and authenticate. One
might want to allow access based on IP address (similar to the usual rsh protocol
but with di�erent/no restrictions on ports < 1024), to adopt mechanisms such
as Pluggable Authentication Modules (PAM), to allow users to run their own
servers under their own usernames without root access, or any number of other
possibilities. The way to add future mechanisms, for the most part, should be
to continue to use port 2401, but to use di�erent strings in place of `BEGIN AUTH

REQUEST'.

4 Password scrambling algorithm

The pserver authentication protocol, as described in Chapter 3 [Connection and Au-
thentication], page 4, trivially encodes the passwords. This is only to prevent inadvertent
compromise; it provides no protection against even a relatively unsophisticated attacker.
For comparison, HTTP Basic Authentication (as described in RFC2068) uses BASE64 for
a similar purpose. CVS uses its own algorithm, described here.

The scrambled password starts with `A', which serves to identify the scrambling algorithm
in use. After that follows a single octet for each character in the password, according to a
�xed encoding. The values are shown here, with the encoded values in decimal. Control
characters, space, and characters outside the invariant ISO 646 character set are not shown;
such characters are not recommended for use in passwords. There is a long discussion of
character set issues in Chapter 6 [Protocol Notes], page 29.

0 111 P 125 p 58
! 120 1 52 A 57 Q 55 a 121 q 113
" 53 2 75 B 83 R 54 b 117 r 32

3 119 C 43 S 66 c 104 s 90
4 49 D 46 T 124 d 101 t 44

% 109 5 34 E 102 U 126 e 100 u 98
& 72 6 82 F 40 V 59 f 69 v 60
' 108 7 81 G 89 W 47 g 73 w 51
(70 8 95 H 38 X 92 h 99 x 33
) 64 9 65 I 103 Y 71 i 63 y 97
* 76 : 112 J 45 Z 115 j 94 z 62
+ 67 ; 86 K 50 k 93
, 116 < 118 L 42 l 39
- 74 = 110 M 123 m 37
. 68 > 122 N 91 n 61
/ 87 ? 105 O 35 _ 56 o 48

5 The CVS client/server protocol

In the following, `\n' refers to a linefeed and `\t' refers to a horizontal tab; requests are
what the client sends and responses are what the server sends. In general, the connection is
governed by the client|the server does not send responses without �rst receiving requests
to do so; see Section 5.9 [Response intro], page 19 for more details of this convention.

It is typical, early in the connection, for the client to transmit a Valid-responses

request, containing all the responses it supports, followed by a valid-requests request,
which elicits from the server a Valid-requests response containing all the requests it
understands. In this way, the client and server each �nd out what the other supports before
exchanging large amounts of data (such as �le contents).

5.1 Entries Lines

Entries lines are transmitted as:

/ name / version / con
ict / options / tag or date

tag or date is either `T' tag or `D' date or empty. If it is followed by a slash, anything
after the slash shall be silently ignored.

version can be empty, or start with `0' or `-', for no user �le, new user �le, or user �le
to be removed, respectively.

con
ict, if it starts with `+', indicates that the �le had con
icts in it. The rest of con
ict
is `=' if the timestamp matches the �le, or anything else if it doesn't. If con
ict does not
start with a `+', it is silently ignored.

options signi�es the keyword expansion options (for example `-ko'). In an Entry request,
this indicates the options that were speci�ed with the �le from the previous �le updating
response (see Section 5.9 [Response intro], page 19, for a list of �le updating responses); if
the client is specifying the `-k' or `-A' option to update, then it is the server which �gures
out what overrides what.

5.2 File Modes

A mode is any number of repetitions of

mode-type = data

separated by `,'.

mode-type is an identi�er composed of alphanumeric characters. Currently speci�ed: `u'
for user, `g' for group, `o' for other (see below for discussion of whether these have their
POSIX meaning or are more loose). Unrecognized values of mode-type are silently ignored.

data consists of any data not containing `,', `\0' or `\n'. For `u', `g', and `o' mode types,
data consists of alphanumeric characters, where `r' means read, `w' means write, `x' means
execute, and unrecognized letters are silently ignored.

The two most obvious ways in which the mode matters are: (1) is it writeable? This
is used by the developer communication features, and is implemented even on OS/2 (and
could be implemented on DOS), whose notion of mode is limited to a readonly bit. (2) is it
executable? Unix CVS users need CVS to store this setting (for shell scripts and the like).

The current CVS implementation on unix does a little bit more than just maintain these
two settings, but it doesn't really have a nice general facility to store or version control the
mode, even on unix, much less across operating systems with diverse protection features. So
all the ins and outs of what the mode means across operating systems haven't really been
worked out (e.g. should the VMS port use ACLs to get POSIX semantics for groups?).

5.3 Conventions regarding transmission of �le names

In most contexts, `/' is used to separate directory and �le names in �lenames, and any
use of other conventions (for example, that the user might type on the command line) is
converted to that form. The only exceptions might be a few cases in which the server
provides a magic cookie which the client then repeats verbatim, but as the server has not
yet been ported beyond unix, the two rules provide the same answer (and what to do if
future server ports are operating on a repository like e:/foo or CVS ROOT:[FOO.BAR] has
not been carefully thought out).

Characters outside the invariant ISO 646 character set should be avoided in �lenames.
This restriction may need to be relaxed to allow for characters such as `[' and `]' (see above
about non-unix servers); this has not been carefully considered (and currently implementa-
tions probably use whatever character sets that the operating systems they are running on
allow, and/or that users specify). Of course the most portable practice is to restrict oneself
further, to the POSIX portable �lename character set as speci�ed in POSIX.1.

5.4 File transmissions

File contents (noted below as �le transmission) can be sent in one of two forms. The
simpler form is a number of bytes, followed by a linefeed, followed by the speci�ed number
of bytes of �le contents. These are the entire contents of the speci�ed �le. Second, if both
client and server support `gzip-file-contents', a `z' may precede the length, and the
`�le contents' sent are actually compressed with `gzip' (RFC1952/1951) compression. The
length speci�ed is that of the compressed version of the �le.

In neither case are the �le content followed by any additional data. The transmission of
a �le will end with a linefeed i� that �le (or its compressed form) ends with a linefeed.

The encoding of �le contents depends on the value for the `-k' option. If the �le is binary
(as speci�ed by the `-kb' option in the appropriate place), then it is just a certain number
of octets, and the protocol contributes nothing towards determining the encoding (using
the �le name is one widespread, if not universally popular, mechanism). If the �le is text
(not binary), then the �le is sent as a series of lines, separated by linefeeds. If the keyword
expansion is set to something other than `-ko', then it is expected that the �le conform to
the RCS expectations regarding keyword expansion|in particular, that it is in a character
set such as ASCII in which 0x24 is a dollar sign (`$').

5.5 Strings

In various contexts, for example the Argument request and the M response, one transmits
what is essentially an arbitrary string. Often this will have been supplied by the user (for

example, the `-m' option to the ci request). The protocol has no mechanism to specify the
character set of such strings; it would be fairly safe to stick to the invariant ISO 646 character
set but the existing practice is probably to just transmit whatever the user speci�es, and
hope that everyone involved agrees which character set is in use, or sticks to a common
subset.

5.6 Dates

The protocol contains times and dates in various places.

For the `-D' option to the annotate, co, diff, export, history, rdiff, rtag, tag, and
update requests, the server should support two formats:

26 May 1997 13:01:40 GMT ; RFC 822 as modi�ed by RFC 1123
5/26/1997 13:01:40 GMT ; traditional

The former format is preferred; the latter however is sent by the CVS command line
client (versions 1.5 through at least 1.9).

For the `-d' option to the log request, servers should at least support RFC 822/1123
format. Clients are encouraged to use this format too (traditionally the command line CVS
client has just passed along the date format speci�ed by the user, however).

For Mod-time, see the description of that response.

For Notify, see the description of that request.

5.7 Request intro

By convention, requests which begin with a capital letter do not elicit a response from
the server, while all others do { save one. The exception is `gzip-file-contents'. Unrec-
ognized requests will always elicit a response from the server, even if that request begins
with a capital letter.

5.8 Requests

Here are the requests:

Root pathname \n

Response expected: no. Tell the server which CVSROOT to use. Note that path-
name is a local directory and not a fully quali�ed CVSROOT variable. pathname

must already exist; if creating a new root, use the init request, not Root. path-
name does not include the hostname of the server, how to access the server,
etc.; by the time the CVS protocol is in use, connection, authentication, etc.,
are already taken care of.

The Root request must be sent only once, and it must be sent before any requests
other than Valid-responses, valid-requests, UseUnchanged, or init.

Valid-responses request-list \n

Response expected: no. Tell the server what responses the client will accept.
request-list is a space separated list of tokens.

valid-requests \n

Response expected: yes. Ask the server to send back a Valid-requests re-
sponse.

Directory local-directory \n

Additional data: repository \n. Response expected: no. Tell the server what
directory to use. The repository should be a directory name from a previous
server response. Note that this both gives a default for Entry and Modified

and also for ci and the other commands; normal usage is to send Directory

for each directory in which there will be an Entry or Modified, and then a �nal
Directory for the original directory, then the command. The local-directory

is relative to the top level at which the command is occurring (i.e. the last
Directory which is sent before the command); to indicate that top level, `.'
should be sent for local-directory.

Here is an example of where a client gets repository and local-directory. Sup-
pose that there is a module de�ned by

moddir 1dir

That is, one can check out moddir and it will take 1dir in the repository and
check it out to moddir in the working directory. Then an initial check out could
proceed like this:

C: Root /home/kingdon/zwork/cvsroot
. . .
C: Argument moddir
C: Directory .
C: /home/kingdon/zwork/cvsroot
C: co
S: Clear-sticky moddir/
S: /home/kingdon/zwork/cvsroot/1dir/
. . .
S: ok

In this example the response shown is Clear-sticky, but it could be another
response instead. Note that it returns two pathnames. The �rst one, `moddir/',
indicates the working directory to check out into. The second one, ending in
`1dir/', indicates the directory to pass back to the server in a subsequent
Directory request. For example, a subsequent update request might look like:

C: Directory moddir
C: /home/kingdon/zwork/cvsroot/1dir
. . .
C: update

For a given local-directory, the repository will be the same for each of the
responses, so one can use the repository from whichever response is most con-
venient. Typically a client will store the repository along with the sources for
each local-directory, use that same setting whenever operating on that local-

directory, and not update the setting as long as the local-directory exists.

A client is free to rename a local-directory at any time (for example, in response
to an explicit user request). While it is true that the server supplies a local-

directory to the client, as noted above, this is only the default place to put the
directory. Of course, the various Directory requests for a single command (for
example, update or ci request) should name a particular directory with the
same local-directory.

Each Directory request speci�es a brand-new local-directory and repository ;
that is, local-directory and repository are never relative to paths speci�ed in
any previous Directory request.

Max-dotdot level \n

Response expected: no. Tell the server that level levels of directories above the
directory which Directory requests are relative to will be needed. For example,
if the client is planning to use a Directory request for `../../foo', it must
send a Max-dotdot request with a level of at least 2. Max-dotdot must be sent
before the �rst Directory request.

Static-directory \n

Response expected: no. Tell the server that the directory most recently speci�ed
with Directory should not have additional �les checked out unless explicitly
requested. The client sends this if the Entries.Static
ag is set, which is
controlled by the Set-static-directory and Clear-static-directory re-
sponses.

Sticky tagspec \n

Response expected: no. Tell the server that the directory most recently speci�ed
with Directory has a sticky tag or date tagspec. The �rst character of tagspec
is `T' for a tag, or `D' for a date. The remainder of tagspec contains the actual
tag or date.

The server should remember Static-directory and Sticky requests for a par-
ticular directory; the client need not resend them each time it sends a Directory
request for a given directory. However, the server is not obliged to remember
them beyond the context of a single command.

Checkin-prog program \n

Response expected: no. Tell the server that the directory most recently speci�ed
with Directory has a checkin program program. Such a program would have
been previously set with the Set-checkin-prog response.

Update-prog program \n

Response expected: no. Tell the server that the directory most recently speci�ed
with Directory has an update program program. Such a program would have
been previously set with the Set-update-prog response.

Entry entry-line \n

Response expected: no. Tell the server what version of a �le is on the local
machine. The name in entry-line is a name relative to the directory most
recently speci�ed with Directory. If the user is operating on only some �les
in a directory, Entry requests for only those �les need be included. If an Entry

request is sent without Modified, Is-modified, or Unchanged, it means the
�le is lost (does not exist in the working directory). If both Entry and one of

Modified, Is-modified, or Unchanged are sent for the same �le, Entrymust be
sent �rst. For a given �le, one can send Modified, Is-modified, or Unchanged,
but not more than one of these three.

Kopt option \n

This indicates to the server which keyword expansion options to use for the �le
speci�ed by the next Modified or Is-modified request (for example `-kb' for
a binary �le). This is similar to Entry, but is used for a �le for which there is
no entries line. Typically this will be a �le being added via an add or import
request. The client may not send both Kopt and Entry for the same �le.

Modified �lename \n

Response expected: no. Additional data: mode, \n, �le transmission. Send the
server a copy of one locally modi�ed �le. �lename is relative to the most recent
repository sent with Directory. If the user is operating on only some �les in
a directory, only those �les need to be included. This can also be sent without
Entry, if there is no entry for the �le.

Is-modified �lename \n

Response expected: no. Additional data: none. Like Modified, but used if the
server only needs to know whether the �le is modi�ed, not the contents.

The commands which can take Is-modified instead of Modified with no
known change in behavior are: admin, diff (if and only if two `-r' or
`-D' options are speci�ed), watch-on, watch-off, watch-add, watch-remove,
watchers, editors, log, and annotate.

For the status command, one can send Is-modified but if the client is using
imperfect mechanisms such as timestamps to determine whether to consider a
�le modi�ed, then the behavior will be di�erent. That is, if one sends Modified,
then the server will actually compare the contents of the �le sent and the one
it derives from to determine whether the �le is genuinely modi�ed. But if one
sends Is-modified, then the server takes the client's word for it. A similar
situation exists for tag, if the `-c' option is speci�ed.

Commands for which Modified is necessary are co, ci, update, and import.

Commands which do not need to inform the server about a working directory,
and thus should not be sending either Modified or Is-modified: rdiff, rtag,
history, init, and release.

Commands for which further investigation is warranted are: remove, add, and
export. Pending such investigation, the more conservative course of action is
to stick to Modified.

Unchanged �lename \n

Response expected: no. Tell the server that �lename has not been modi�ed in
the checked out directory. The name is relative to the most recent repository
sent with Directory.

UseUnchanged \n

Response expected: no. To specify the version of the protocol described in this
document, servers must support this request (although it need not do anything)
and clients must issue it.

Notify �lename \n

Response expected: no. Tell the server that a edit or unedit command has
taken place. The server needs to send a Notified response, but such response
is deferred until the next time that the server is sending responses. Response
expected: no. Additional data:

noti�cation-type \t time \t clienthost \t
working-dir \t watches \n

where noti�cation-type is `E' for edit, `U' for unedit, unde�ned behavior if `C',
and all other letters should be silently ignored for future expansion. time is the
time at which the edit or unedit took place, in a user-readable format of the
client's choice (the server should treat the time as an opaque string rather than
interpreting it). clienthost is the name of the host on which the edit or unedit
took place, and working-dir is the pathname of the working directory where
the edit or unedit took place. watches are the temporary watches to set. If
watches is followed by \t then the \t and the rest of the line should be ignored,
for future expansion.

Note that a client may be capable of performing an edit or unedit operation
without connecting to the server at that time, and instead connecting to the
server when it is convenient (for example, when a laptop is on the net again) to
send the Notify requests. Even if a client is capable of deferring noti�cations,
it should attempt to send them immediately (one can send Notify requests
together with a noop request, for example), unless perhaps if it can know that
a connection would be impossible.

Questionable �lename \n

Response expected: no. Additional data: no. Tell the server to check whether
�lename should be ignored, and if not, next time the server sends responses,
send (in a M response) `?' followed by the directory and �lename. �lename must
not contain `/'; it needs to be a �le in the directory named by the most recent
Directory request.

Case \n Response expected: no. Tell the server that �lenames should be matched in
a case-insensitive fashion. Note that this is not the primary mechanism for
achieving case-insensitivity; for the most part the client keeps track of the case
which the server wants to use and takes care to always use that case regardless of
what the user speci�es. For example the �lenames given in Entry and Modified

requests for the same �le must match in case regardless of whether the Case

request is sent. The latter mechanism is more general (it could also be used for
8.3 �lenames, VMS �lenames with more than one `.', and any other situation in
which there is a predictable mapping between �lenames in the working directory
and �lenames in the protocol), but there are some situations it cannot handle
(ignore patterns, or situations where the user speci�es a �lename and the client
does not know about that �le).

Argument text \n

Response expected: no. Save argument for use in a subsequent command.
Arguments accumulate until an argument-using command is given, at which
point they are forgotten.

Argumentx text \n

Response expected: no. Append \n followed by text to the current argument
being saved.

Global_option option \n

Response expected: no. Transmit one of the global options `-q', `-Q', `-l',
`-t', `-r', or `-n'. option must be one of those strings, no variations (such as
combining of options) are allowed. For graceful handling of valid-requests,
it is probably better to make new global options separate requests, rather than
trying to add them to this request.

Gzip-stream level \n

Response expected: no. Use zlib (RFC 1950/1951) compression to compress all
further communication between the client and the server. After this request is
sent, all further communication must be compressed. All further data received
from the server will also be compressed. The level argument suggests to the
server the level of compression that it should apply; it should be an integer
between 1 and 9, inclusive, where a higher number indicates more compression.

Kerberos-encrypt \n

Response expected: no. Use Kerberos encryption to encrypt all further commu-
nication between the client and the server. This will only work if the connection
was made over Kerberos in the �rst place. If both the Gzip-stream and the
Kerberos-encrypt requests are used, the Kerberos-encrypt request should be
used �rst. This will make the client and server encrypt the compressed data,
as opposed to compressing the encrypted data. Encrypted data is generally
incompressible.

Note that this request does not fully prevent an attacker from hijacking the con-
nection, in the sense that it does not prevent hijacking the connection between
the initial authentication and the Kerberos-encrypt request.

Gssapi-encrypt \n

Response expected: no. Use GSSAPI encryption to encrypt all further commu-
nication between the client and the server. This will only work if the connection
was made over GSSAPI in the �rst place. See Kerberos-encrypt, above, for
the relation between Gssapi-encrypt and Gzip-stream.

Note that this request does not fully prevent an attacker from hijacking the con-
nection, in the sense that it does not prevent hijacking the connection between
the initial authentication and the Gssapi-encrypt request.

Gssapi-authenticate \n

Response expected: no. Use GSSAPI authentication to authenticate all fur-
ther communication between the client and the server. This will only work if
the connection was made over GSSAPI in the �rst place. Encrypted data is
automatically authenticated, so using both Gssapi-authenticate and Gssapi-
encrypt has no e�ect beyond that of Gssapi-encrypt. Unlike encrypted data,
it is reasonable to compress authenticated data.

Note that this request does not fully prevent an attacker from hijacking the con-
nection, in the sense that it does not prevent hijacking the connection between
the initial authentication and the Gssapi-authenticate request.

Set variable=value \n

Response expected: no. Set a user variable variable to value.

expand-modules \n

Response expected: yes. Expand the modules which are speci�ed in the argu-
ments. Returns the data in Module-expansion responses. Note that the server
can assume that this is checkout or export, not rtag or rdi�; the latter do not
access the working directory and thus have no need to expand modules on the
client side.

Expand may not be the best word for what this request does. It does not
necessarily tell you all the �les contained in a module, for example. Basically
it is a way of telling you which working directories the server needs to know
about in order to handle a checkout of the speci�ed modules.

For example, suppose that the server has a module de�ned by

aliasmodule -a 1dir

That is, one can check out aliasmodule and it will take 1dir in the repository
and check it out to 1dir in the working directory. Now suppose the client
already has this module checked out and is planning on using the co request
to update it. Without using expand-modules, the client would have two bad
choices: it could either send information about all working directories under the
current directory, which could be unnecessarily slow, or it could be ignorant of
the fact that aliasmodule stands for 1dir, and neglect to send information for
1dir, which would lead to incorrect operation.

With expand-modules, the client would �rst ask for the module to be expanded:

C: Root /home/kingdon/zwork/cvsroot
. . .
C: Argument aliasmodule
C: Directory .
C: /home/kingdon/zwork/cvsroot
C: expand-modules
S: Module-expansion 1dir
S: ok

and then it knows to check the `1dir' directory and send requests such as Entry
and Modified for the �les in that directory.

ci \n

diff \n

tag \n

status \n

log \n

admin \n

history \n

watchers \n

editors \n

annotate \n

Response expected: yes. Actually do a cvs command. This uses any previous
Argument, Directory, Entry, or Modified requests, if they have been sent.
The last Directory sent speci�es the working directory at the time of the
operation. No provision is made for any input from the user. This means that
ci must use a -m argument if it wants to specify a log message.

co \n Response expected: yes. Get �les from the repository. This uses any previous
Argument, Directory, Entry, or Modified requests, if they have been sent.
Arguments to this command are module names; the client cannot know what
directories they correspond to except by (1) just sending the co request, and
then seeing what directory names the server sends back in its responses, and
(2) the expand-modules request.

export \n Response expected: yes. Get �les from the repository. This uses any previous
Argument, Directory, Entry, or Modified requests, if they have been sent.
Arguments to this command are module names, as described for the co request.
The intention behind this command is that a client can get sources from a server
without storing CVS information about those sources. That is, a client probably
should not count on being able to take the entries line returned in the Created
response from an export request and send it in a future Entry request. Note
that the entries line in the Created response must indicate whether the �le is
binary or text, so the client can create it correctly.

rdiff \n

rtag \n Response expected: yes. Actually do a cvs command. This uses any previ-
ous Argument requests, if they have been sent. The client should not send
Directory, Entry, or Modified requests for this command; they are not used.
Arguments to these commands are module names, as described for co.

init root-name \n

Response expected: yes. If it doesn't already exist, create a cvs repository
root-name. Note that root-name is a local directory and not a fully quali�ed
CVSROOT variable. The Root request need not have been previously sent.

update \n Response expected: yes. Actually do a cvs update command. This uses any
previous Argument, Directory, Entry, or Modified requests, if they have been
sent. The last Directory sent speci�es the working directory at the time of the
operation. The -I option is not used{�les which the client can decide whether

to ignore are not mentioned and the client sends the Questionable request for
others.

import \n Response expected: yes. Actually do a cvs import command. This uses any
previous Argument, Directory, Entry, or Modified requests, if they have been
sent. The last Directory sent speci�es the working directory at the time of the
operation. The �les to be imported are sent in Modified requests (�les which
the client knows should be ignored are not sent; the server must still process
the CVSROOT/cvsignore �le unless -I ! is sent). A log message must have been
speci�ed with a -m argument.

add \n Response expected: yes. Add a �le or directory. This uses any previous
Argument, Directory, Entry, or Modified requests, if they have been sent.
The last Directory sent speci�es the working directory at the time of the op-
eration.

To add a directory, send the directory to be added using Directory and
Argument requests. For example:

C: Root /u/cvsroot
. . .
C: Argument nsdir
C: Directory nsdir
C: /u/cvsroot/1dir/nsdir
C: Directory .
C: /u/cvsroot/1dir
C: add
S: M Directory /u/cvsroot/1dir/nsdir added to the repository
S: ok

You will notice that the server does not signal to the client in any particular way
that the directory has been successfully added. The client is supposed to just
assume that the directory has been added and update its records accordingly.
Note also that adding a directory is immediate; it does not wait until a ci

request as �les do.

To add a �le, send the �le to be added using a Modified request. For example:

C: Argument nfile
C: Directory .
C: /u/cvsroot/1dir
C: Modified nfile
C: u=rw,g=r,o=r
C: 6
C: hello
C: add
S: E cvs server: scheduling file `nfile' for addition
S: Mode u=rw,g=r,o=r
S: Checked-in ./
S: /u/cvsroot/1dir/nfile
S: /nfile/0///
S: E cvs server: use 'cvs commit' to add this file permanently
S: ok

Note that the �le has not been added to the repository; the only e�ect of a
successful add request, for a �le, is to supply the client with a new entries
line containing `0' to indicate an added �le. In fact, the client probably could
perform this operation without contacting the server, although using add does
cause the server to perform a few more checks.

The client sends a subsequent ci to actually add the �le to the repository.

Another quirk of the add request is that with CVS 1.9 and older, a pathname
speci�ed in an Argument request cannot contain `/'. There is no good reason
for this restriction, and in fact more recent CVS servers don't have it. But
the way to interoperate with the older servers is to ensure that all Directory
requests for add (except those used to add directories, as described above), use
`.' for local-directory. Specifying another string for local-directory may not
get an error, but it will get you strange Checked-in responses from the buggy
servers.

remove \n Response expected: yes. Remove a �le. This uses any previous Argument,
Directory, Entry, or Modified requests, if they have been sent. The last
Directory sent speci�es the working directory at the time of the operation.

Note that this request does not actually do anything to the repository; the only
e�ect of a successful remove request is to supply the client with a new entries
line containing `-' to indicate a removed �le. In fact, the client probably could
perform this operation without contacting the server, although using remove

may cause the server to perform a few more checks.

The client sends a subsequent ci request to actually record the removal in the
repository.

watch-on \n

watch-off \n

watch-add \n

watch-remove \n

Response expected: yes. Actually do the cvs watch on, cvs watch off, cvs
watch add, and cvs watch remove commands, respectively. This uses any pre-
vious Argument, Directory, Entry, or Modified requests, if they have been
sent. The last Directory sent speci�es the working directory at the time of the
operation.

release \n

Response expected: yes. Note that a cvs release command has taken place
and update the history �le accordingly.

noop \n Response expected: yes. This request is a null command in the sense that
it doesn't do anything, but merely (as with any other requests expecting a
response) sends back any responses pertaining to pending errors, pending
Notified responses, etc.

update-patches \n

Response expected: yes. This request does not actually do anything. It is used
as a signal that the server is able to generate patches when given an update

request. The client must issue the -u argument to update in order to receive
patches.

gzip-file-contents level \n

Response expected: no. Note that this request does not follow the response
convention stated above. Gzip-stream is suggested instead of gzip-file-

contents as it gives better compression; the only reason to implement the
latter is to provide compression with cvs 1.8 and earlier. The gzip-file-

contents request asks the server to compress �les it sends to the client using
gzip (RFC1952/1951) compression, using the speci�ed level of compression. If
this request is not made, the server must not compress �les.

This is only a hint to the server. It may still decide (for example, in the case
of very small �les, or �les that already appear to be compressed) not to do the
compression. Compression is indicated by a `z' preceding the �le length.

Availability of this request in the server indicates to the client that it may
compress �les sent to the server, regardless of whether the client actually uses
this request.

wrapper-sendme-rcsOptions \n

Response expected: yes. Request that the server transmit mappings from �le-
names to keyword expansion modes in Wrapper-rcsOption responses.

other-request text \n

Response expected: yes. Any unrecognized request expects a response, and does
not contain any additional data. The response will normally be something like
`error unrecognized request', but it could be a di�erent error if a previous
command which doesn't expect a response produced an error.

When the client is done, it drops the connection.

5.9 Introduction to Responses

After a command which expects a response, the server sends however many of the follow-
ing responses are appropriate. The server should not send data at other times (the current
implementation may violate this principle in a few minor places, where the server is printing
an error message and exiting|this should be investigated further).

Any set of responses always ends with `error' or `ok'. This indicates that the response
is over.

The responses Checked-in, New-entry, Updated, Created, Update-existing, Merged,
and Patched are refered to as �le updating responses, because they change the status of a
�le in the working directory in some way. The responses Mode, Mod-time, and Checksum are
referred to as �le update modifying responses because they modify the next �le updating
response. In no case shall a �le update modifying response apply to a �le updating response
other than the next one. Nor can the same �le update modifying response occur twice for
a given �le updating response (if servers diagnose this problem, it may aid in detecting the
case where clients send an update modifying response without following it by a �le updating
response).

5.10 The "pathname" in responses

Many of the responses contain something called pathname. The name is somewhat
misleading; it actually indicates a pair of pathnames. First, a local directory name rel-
ative to the directory in which the command was given (i.e. the last Directory before
the command). Then a linefeed and a repository name. Then a slash and the �lename
(without a `,v' ending). For example, for a �le `i386.mh' which is in the local directory
`gas.clean/config' and for which the repository is `/rel/cvsfiles/devo/gas/config':

gas.clean/config/
/rel/cvsfiles/devo/gas/config/i386.mh

If the server wants to tell the client to create a directory, then it merely uses the directory
in any response, as described above, and the client should create the directory if it does not
exist. Note that this should only be done one directory at a time, in order to permit the
client to correctly store the repository for each directory. Servers can use requests such as
Clear-sticky, Clear-static-directory, or any other requests, to create directories.

Some server implementations may poorly distinguish between a directory which should
not exist and a directory which contains no �les; in order to refrain from creating empty
directories a client should both send the `-P' option to update or co, and should also detect
the case in which the server asks to create a directory but not any �les within it (in that
case the client should remove the directory or refrain from creating it in the �rst place).
Note that servers could clean this up greatly by only telling the client to create directories
if the directory in question should exist, but until servers do this, clients will need to o�er
the `-P' behavior described above.

5.11 Responses

Here are the responses:

Valid-requests request-list \n

Indicate what requests the server will accept. request-list is a space sepa-
rated list of tokens. If the server supports sending patches, it will include
`update-patches' in this list. The `update-patches' request does not actually
do anything.

Checked-in pathname \n

Additional data: New Entries line, \n. This means a �le pathname has been
successfully operated on (checked in, added, etc.). name in the Entries line is
the same as the last component of pathname.

New-entry pathname \n

Additional data: New Entries line, \n. Like Checked-in, but the �le is not up
to date.

Updated pathname \n

Additional data: New Entries line, \n, mode, \n, �le transmission. A new copy
of the �le is enclosed. This is used for a new revision of an existing �le, or
for a new �le, or for any other case in which the local (client-side) copy of the
�le needs to be updated, and after being updated it will be up to date. If any

directory in pathname does not exist, create it. This response is not used if
Created and Update-existing are supported.

Created pathname \n

This is just like Updated and takes the same additional data, but is used only if
no Entry, Modified, or Unchanged request has been sent for the �le in question.
The distinction between Created and Update-existing is so that the client
can give an error message in several cases: (1) there is a �le in the working
directory, but not one for which Entry, Modified, or Unchanged was sent (for
example, a �le which was ignored, or a �le for which Questionable was sent),
(2) there is a �le in the working directory whose name di�ers from the one
mentioned in Created in ways that the client is unable to use to distinguish
�les. For example, the client is case-insensitive and the names di�er only in
case.

Update-existing pathname \n

This is just like Updated and takes the same additional data, but is used only if
a Entry, Modified, or Unchanged request has been sent for the �le in question.

This response, or Merged, indicates that the server has determined that it is
OK to overwrite the previous contents of the �le speci�ed by pathname. Pro-
vided that the client has correctly sent Modified or Is-modified requests for
a modi�ed �le, and the �le was not modi�ed while CVS was running, the server
can ensure that a user's modi�cations are not lost.

Merged pathname \n

This is just like Updated and takes the same additional data, with the one
di�erence that after the new copy of the �le is enclosed, it will still not be up
to date. Used for the results of a merge, with or without con
icts.

It is useful to preserve an copy of what the �le looked like before the merge.
This is basically handled by the server; before sending Merged it will send a
Copy-file response. For example, if the �le is `aa' and it derives from revision
1.3, the Copy-file response will tell the client to copy `aa' to `.#aa.1.3'. It is
up to the client to decide how long to keep this �le around; traditionally clients
have left it around forever, thus letting the user clean it up as desired. But
another answer, such as until the next commit, might be preferable.

Rcs-diff pathname \n

This is just like Updated and takes the same additional data, with the one
di�erence that instead of sending a new copy of the �le, the server sends an
RCS change text. This change text is produced by `diff -n' (the GNU di�
`-a' option may also be used). The client must apply this change text to the
existing �le. This will only be used when the client has an exact copy of an
earlier revision of a �le. This response is only used if the update command is
given the `-u' argument.

Patched pathname \n

This is just like Rcs-diff and takes the same additional data, except that it
sends a standard patch rather than an RCS change text. The patch is produced
by `diff -c' for cvs 1.6 and later (see POSIX.2 for a description of this format),

or `diff -u' for previous versions of cvs; clients are encouraged to accept either
format. Like Rcs-diff, this response is only used if the update command is
given the `-u' argument.

The Patched response is deprecated in favor of the Rcs-diff response. How-
ever, older clients (CVS 1.9 and earlier) only support Patched.

Mode mode \n

This mode applies to the next �le mentioned in Checked-in. Mode is a �le
update modifying response as described in Section 5.9 [Response intro], page 19.

Mod-time time \n

Set the modi�cation time of the next �le sent to time. Mod-time is a �le update
modifying response as described in Section 5.9 [Response intro], page 19. The
time is in the format speci�ed by RFC822 as modi�ed by RFC1123. The server
may specify any timezone it chooses; clients will want to convert that to their
own timezone as appropriate. An example of this format is:

26 May 1997 13:01:40 -0400

There is no requirement that the client and server clocks be synchronized. The
server just sends its recommendation for a timestamp (based on its own clock,
presumably), and the client should just believe it (this means that the time
might be in the future, for example).

Checksum checksum\n

The checksum applies to the next �le sent (that is, Checksum is a �le update
modifying response as described in Section 5.9 [Response intro], page 19). In
the case of Patched, the checksum applies to the �le after being patched, not to
the patch itself. The client should compute the checksum itself, after receiving
the �le or patch, and signal an error if the checksums do not match. The
checksum is the 128 bit MD5 checksum represented as 32 hex digits (MD5 is
described in RFC1321). This response is optional, and is only used if the client
supports it (as judged by the Valid-responses request).

Copy-file pathname \n

Additional data: newname \n. Copy �le pathname to newname in the same
directory where it already is. This does not a�ect CVS/Entries.

This can optionally be implemented as a rename instead of a copy. The only
use for it which currently has been identi�ed is prior to a Merged response as
described under Merged. Clients can probably assume that is how it is being
used, if they want to worry about things like how long to keep the newname

�le around.

Removed pathname \n

The �le has been removed from the repository (this is the case where cvs prints
`file foobar.c is no longer pertinent').

Remove-entry pathname \n

The �le needs its entry removed from CVS/Entries, but the �le itself is already
gone (this happens in response to a ci request which involves committing the
removal of a �le).

Set-static-directory pathname \n

This instructs the client to set the Entries.Static
ag, which it should then
send back to the server in a Static-directory request whenever the directory
is operated on. pathname ends in a slash; its purpose is to specify a directory,
not a �le within a directory.

Clear-static-directory pathname \n

Like Set-static-directory, but clear, not set, the
ag.

Set-sticky pathname \n

Additional data: tagspec \n. Tell the client to set a sticky tag or date, which
should be supplied with the Sticky request for future operations. pathname

ends in a slash; its purpose is to specify a directory, not a �le within a directory.
The client should store tagspec and pass it back to the server as-is, to allow for
future expansion. The �rst character of tagspec is `T' for a tag, `D' for a date,
or something else for future expansion. The remainder of tagspec contains the
actual tag or date.

Clear-sticky pathname \n

Clear any sticky tag or date set by Set-sticky.

Template pathname \n

Additional data: �le transmission (note: compressed �le transmissions are not
supported). pathname ends in a slash; its purpose is to specify a directory,
not a �le within a directory. Tell the client to store the �le transmission as the
template log message, and then use that template in the future when prompting
the user for a log message.

Set-checkin-prog dir \n

Additional data: prog \n. Tell the client to set a checkin program, which should
be supplied with the Checkin-prog request for future operations.

Set-update-prog dir \n

Additional data: prog \n. Tell the client to set an update program, which
should be supplied with the Update-prog request for future operations.

Notified pathname \n

Indicate to the client that the noti�cation for pathname has been done. There
should be one such response for every Notify request; if there are several Notify
requests for a single �le, the requests should be processed in order; the �rst
Notified response pertains to the �rst Notify request, etc.

Module-expansion pathname \n

Return a �le or directory which is included in a particular module. pathname

is relative to cvsroot, unlike most pathnames in responses. pathname should
be used to look and see whether some or all of the module exists on the client
side; it is not necessarily suitable for passing as an argument to a co request
(for example, if the modules �le contains the `-d' option, it will be the directory
speci�ed with `-d', not the name of the module).

Wrapper-rcsOption pattern -k 'option' \n

Transmit to the client a �lename pattern which implies a certain keyword ex-
pansion mode. The pattern is a wildcard pattern (for example, `*.exe'. The
option is `b' for binary, and so on. Note that although the syntax happens to
resemble the syntax in certain CVS con�guration �les, it is more constrained;
there must be exactly one space between pattern and `-k' and exactly one
space between `-k' and `'', and no string is permitted in place of `-k' (exten-
sions should be done with new responses, not by extending this one, for graceful
handling of Valid-responses).

M text \n A one-line message for the user.

Mbinary \n

Additional data: �le transmission (note: compressed �le transmissions are not
supported). This is like `M', except the contents of the �le transmission are
binary and should be copied to standard output without translation to local
text �le conventions. To transmit a text �le to standard output, servers should
use a series of `M' requests.

E text \n Same as M but send to stderr not stdout.

F \n Flush stderr. That is, make it possible for the user to see what has been written
to stderr (it is up to the implementation to decide exactly how far it should go
to ensure this).

MT tagname data \n

This response provides for tagged text. It is similar to SGML/HTML/XML in
that the data is structured and a naive application can also make some sense of
it without understanding the structure. The syntax is not SGML-like, however,
in order to �t into the CVS protocol better and (more importantly) to make it
easier to parse, especially in a language like perl or awk.

The tagname can have several forms. If it starts with `a' to `z' or `A' to `Z',
then it represents tagged text. If the implementation recognizes tagname, then
it may interpret data in some particular fashion. If the implementation does
not recognize tagname, then it should simply treat data as text to be sent to the
user (similar to an `M' response). There are two tags which are general purpose.
The `text' tag is similar to an unrecognized tag in that it provides text which
will ordinarily be sent to the user. The `newline' tag is used without data and
indicates that a newline will ordinarily be sent to the user (there is no provision
for embedding newlines in the data of other tagged text responses).

If tagname starts with `+' it indicates a start tag and if it starts with `-' it
indicates an end tag. The remainder of tagname should be the same for match-
ing start and end tags, and tags should be nested (for example one could have
tags in the following order +bold +italic text -italic -bold but not +bold
+italic text -bold -italic). A particular start and end tag may be docu-
mented to constrain the tagged text responses which are valid between them.

Note that if data is present there will always be exactly one space between
tagname and data; if there is more than one space, then the spaces beyond the
�rst are part of data.

Here is an example of some tagged text responses. Note that there is a trailing
space after `Checking in' and `initial revision:' and there are two trailing
spaces after `<--'. Such trailing spaces are, of course, part of data.

MT +checking-in
MT text Checking in
MT fname gz.tst
MT text ;
MT newline
MT rcsfile /home/kingdon/zwork/cvsroot/foo/gz.tst,v
MT text <--
MT fname gz.tst
MT newline
MT text initial revision:
MT init-rev 1.1
MT newline
MT text done
MT newline
MT -checking-in

If the client does not support the `MT' response, the same responses might be
sent as:

M Checking in gz.tst;
M /home/kingdon/zwork/cvsroot/foo/gz.tst,v <-- gz.tst
M initial revision: 1.1
M done

For a list of speci�c tags, see Section 5.12 [Text tags], page 25.

error errno-code ` ' text \n

The command completed with an error. errno-code is a symbolic error code
(e.g. ENOENT); if the server doesn't support this feature, or if it's not appropriate
for this particular message, it just omits the errno-code (in that case there are
two spaces after `error'). Text is an error message such as that provided by
strerror(), or any other message the server wants to use.

ok \n The command completed successfully.

5.12 Tags for the MT tagged text response

The MT response, as described in Section 5.11 [Responses], page 20, o�ers a way for the
server to send tagged text to the client. This section describes speci�c tags. The intention
is to update this section as servers add new tags.

In the following descriptions, text and newline tags are omitted. Such tags contain
information which is intended for users (or to be discarded), and are subject to change at
the whim of the server. To avoid being vulnerable to such whim, clients should look for the
tags listed here, not text, newline, or other tags.

The following tag means to indicate to the user that a �le has been updated. It is more
or less redundant with the Created and Update-existing responses, but we don't try to

specify here whether it occurs in exactly the same circumstances as Created and Update-

existing. The name is the pathname of the �le being updated relative to the directory in
which the command is occurring (that is, the last Directory request which is sent before
the command).

MT +updated
MT fname name
MT -updated

5.13 Example

Here is an example; lines are pre�xed by `C: ' to indicate the client sends them or `S: '
to indicate the server sends them.

The client starts by connecting, sending the root, and completing the protocol negotia-
tion. In actual practice the lists of valid responses and requests would be longer.

C: Root /u/cvsroot
C: Valid-responses ok error Checked-in M E
C: valid-requests
S: Valid-requests Root Directory Entry Modified Argument Argumentx ci co
S: ok
C: UseUnchanged

The client wants to check out the supermunger module into a fresh working directory.
Therefore it �rst expands the supermunger module; this step would be omitted if the client
was operating on a directory rather than a module.

C: Argument supermunger
C: Directory .
C: /u/cvsroot
C: expand-modules

The server replies that the supermunger module expands to the directory supermunger

(the simplest case):

S: Module-expansion supermunger
S: ok

The client then proceeds to check out the directory. The fact that it sends only a single
Directory request which speci�es `.' for the working directory means that there is not
already a supermunger directory on the client.

C: Argument -N
C: Argument supermunger
C: Directory .
C: /u/cvsroot
C: co

The server replies with the requested �les. In this example, there is only one �le,
`mungeall.c'. The Clear-sticky and Clear-static-directory requests are sent by the
current implementation but they have no e�ect because the default is for those settings to
be clear when a directory is newly created.

S: Clear-sticky supermunger/
S: /u/cvsroot/supermunger/

S: Clear-static-directory supermunger/
S: /u/cvsroot/supermunger/
S: E cvs server: Updating supermunger
S: M U supermunger/mungeall.c
S: Created supermunger/
S: /u/cvsroot/supermunger/mungeall.c
S: /mungeall.c/1.1///
S: u=rw,g=r,o=r
S: 26
S: int mein () { abort (); }
S: ok

The current client implementation would break the connection here and make a new
connection for the next command. However, the protocol allows it to keep the connection
open and continue, which is what we show here.

After the user modi�es the �le and instructs the client to check it back in. The client
sends arguments to specify the log message and �le to check in:

C: Argument -m
C: Argument Well, you see, it took me hours and hours to find
C: Argumentx this typo and I searched and searched and eventually
C: Argumentx had to ask John for help.
C: Argument mungeall.c

It also sends information about the contents of the working directory, including the
new contents of the modi�ed �le. Note that the user has changed into the `supermunger'
directory before executing this command; the top level directory is a user-visible concept
because the server should print �lenames in M and E responses relative to that directory.

C: Directory .
C: /u/cvsroot/supermunger
C: Entry /mungeall.c/1.1///
C: Modified mungeall.c
C: u=rw,g=r,o=r
C: 26
C: int main () { abort (); }

And �nally, the client issues the checkin command (which makes use of the data just
sent):

C: ci

And the server tells the client that the checkin succeeded:

S: M Checking in mungeall.c;
S: E /u/cvsroot/supermunger/mungeall.c,v <-- mungeall.c
S: E new revision: 1.2; previous revision: 1.1
S: E done
S: Mode u=rw,g=r,o=r
S: Checked-in ./
S: /u/cvsroot/supermunger/mungeall.c
S: /mungeall.c/1.2///
S: ok

5.14 Required versus optional parts of the protocol

The following are part of every known implementation of the CVS protocol (except
obsolete, pre-1.5, versions of CVS) and it is considered reasonable behavior to completely
fail to work if you are connected with an implementation which attempts to not sup-
port them. Requests: Root, Valid-responses, valid-requests, Directory, Entry,
Modified, Unchanged, Argument, Argumentx, ci, co, update. Responses: ok, error,
Valid-requests, Checked-in, Updated, Merged, Removed, M, E.

A server need not implement Repository, but in order to interoperate with CVS 1.5
through 1.9 it must claim to implement it (in Valid-requests). The client will not actually
send the request.

5.15 Obsolete protocol elements

This section brie
y describes protocol elements which are obsolete. There is no attempt
to document them in full detail.

There was a Repository request which was like Directory except it only provided
repository, and the local directory was assumed to be similarly named.

If the UseUnchanged request was not sent, there was a Lost request which was sent
to indicate that a �le did not exist in the working directory, and the meaning of sending
Entries without Lost or Modified was di�erent. All current clients (CVS 1.5 and later)
will send UseUnchanged if it is supported.

6 Notes on the Protocol

A number of enhancements are possible. Also see the �le todo in the cvs source
distribution, which has further ideas concerning various aspects of cvs, some of which
impact the protocol.

� The Modified request could be speeded up by sending di�s rather than entire �les.
The client would need some way to keep the version of the �le which was originally
checked out; probably requiring the use of "cvs edit" in this case is the most sensible
course (the "cvs edit" could be handled by a package like VC for emacs). This would
also allow local operation of cvs diff without arguments.

� The current procedure for cvs update is highly sub-optimal if there are many modi�ed
�les. One possible alternative would be to have the client send a �rst request without
the contents of every modi�ed �le, then have the server tell it what �les it needs. Note
the server needs to do the what-needs-to-be-updated check twice (or more, if changes
in the repository mean it has to ask the client for more �les), because it can't keep
locks open while waiting for the network. Perhaps this whole thing is irrelevant if there
is a multisite capability (as noted in todo), and therefore the rcsmerge can be done
with a repository which is connected via a fast connection.

� The fact that pserver requires an extra network turnaround in order to perform au-
thentication would be nice to avoid. This relates to the issue of reporting errors;
probably the clean solution is to defer the error until the client has issued a request
which expects a response. To some extent this might relate to the next item (in terms
of how easy it is to skip a whole bunch of requests until we get to one that expects a
response). I know that the kerberos code doesn't wait in this fashion, but that proba-
bly can cause network deadlocks and perhaps future problems running over a transport
which is more transaction oriented than TCP. On the other hand I'm not sure it is wise
to make the client conduct a lengthy upload only to �nd there is an authentication
failure.

� The protocol uses an extra network turnaround for protocol negotiation (valid-
requests). It might be nice to avoid this by having the client be able to send requests
and tell the server to ignore them if they are unrecognized (di�erent requests could
produce a fatal error if unrecognized). To do this there should be a standard syntax
for requests. For example, perhaps all future requests should be a single line, with
mechanisms analogous to Argumentx, or several requests working together, to provide
greater amounts of information. Or there might be a standard mechanism for counted
data (analogous to that used by Modified) or continuation lines (like a generalized
Argumentx). It would be useful to compare what HTTP is planning in this area; last
I looked they were contemplating something called Protocol Extension Protocol but
I haven't looked at the relevant IETF documents in any detail. Obviously, we want
something as simple as possible (but no simpler).

� The scrambling algorithm in the CVS client and server actually support more characters
than those documented in Chapter 4 [Password scrambling], page 6. Someday we are
going to either have to document them all (but this is not as easy as it may look,
see below), or (gradually and with adequate process) phase out the support for other

characters in the CVS implementation. This business of having the feature partly
undocumented isn't a desirable state long-term.

The problem with documenting other characters is that unless we know what character
set is in use, there is no way to make a password portable from one system to another.
For example, a with a circle on top might have di�erent encodings in di�erent character
sets.

It almost works to say that the client picks an arbitrary, unknown character set (indeed,
having the CVS client know what character set the user has in mind is a hard problem
otherwise), and scrambles according to a certain octet<->octet mapping. There are
two problems with this. One is that the protocol has no way to transmit character 10
decimal (linefeed), and the current server and clients have no way to handle 0 decimal
(NUL). This may cause problems with certain multibyte character sets, in which octets
10 and 0 will appear in the middle of other characters. The other problem, which is more
minor and possibly not worth worrying about, is that someone can type a password
on one system and then go to another system which uses a di�erent encoding for the
same characters, and have their password not work.

The restriction to the ISO646 invariant subset is the best approach for strings which
are not particularly signi�cant to users. Passwords are visible enough that this is
somewhat doubtful as applied here. ISO646 does, however, have the virtue (!?) of
o�ending everyone. It is easy to say "But the $ is right on people's keyboards! Surely
we can't forbid that". From a human factors point of view, that makes quite a bit of
sense. The contrary argument, of course, is that a with a circle on top, or some of the
characters poorly handled by Unicode, are on someone's keyboard.

