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Abstract. The question of the energy behavior of the partial inelasticities is studied in the context of the
dual parton model. A simple analytical expression is derived which describes the behavior of the partial
inelasticities at high energies. A comparison with the results of some other models is also given. The
question of the violation of Feynman scaling is considered with reference to the inelasticity problem.

1 Introduction

For many practical calculations of propagation and in-
teractions of hadrons the inelasticity parameter is very
important. Its importance is also related with the results
of collider and cosmic ray experiments at high energies.
The inelasticity gives us information about energy losses
of projectile during the collision. Since a full knowledge of
all inclusive distributions and their energy dependence is
unavailable, a concept of the inelasticity coefficient is of
particular value. In large measure this is appropriate for
the cosmic ray physics as the inelasticity coefficient shows
how the energy is shared between the leading particle and
the secondary particles and therefore determines the scales
of cosmic ray attenuation and longitudinal development of
extensive air showers in the atmosphere. Nevertheless, the
energy dependence of the inelasticity is still in question.

The inelasticity Ktot is usually defined as the fraction
of energy carried away by all new produced secondaries
and it can be evaluated from the energy of leading par-
ticles. However, in accelerator experiments the inelastic-
ity has not been determined at energies higher then ISR
[1] because of the difficulties at high energies of measure-
ments of leading particles emitted at very small angles.
The point is that collider experiments study mostly the
central region of the hadronic interactions: owing to the
special technical features of colliders, there are restrictions
on minimal angle at which particles can be registered and
so at high energies, when many particles (including leading
particles) emerge in the very forward cone, the fragmenta-
tion region can not be studied properly in collider experi-
ments. Nonetheless, the SppS-experiments still gave some
information about the fragmentation region: the UA5 Col-
laboration [2–4] and the UA7 Collaboration [5] confirmed
a validity of an approximate Feynman scaling in this re-
gion.

In principle, the behavior of the inelasticity parameter
at high energies can be extracted from several types of
cosmic ray data [6–8].

i) γ-families in emulsion chambers at mountain altitudes.
Here one can study the attenuation length of the family
events and the energy spectrum of hadrons in the families
[9]. The conclusions about the energy behavior of the in-
elasticity, however, are rather sensitive to the assumptions
of the chemical composition of the primaries [6].
ii) Extensive air shower data of Akeno and Fly’s Eye ar-
rays. Coupled analysis of the shower maximum measure-
ments from Fly’s Eye and zenith-angle distributions of
showers at fixed altitude, from Akeno, gives a possibil-
ity to determine Ktot (E) and σ

(p−air)
in (E). This analysis

seems to favor the conclusions about the inelasticity de-
creasing as the energy increases [7,8]. But on the base of
the data in the work [10] the opposite deductions were
made as well.
iii) Muon bundles in underground detectors [6]. The un-
derground multi-muon data are sensitive to the chemical
composition and the multiplicity in the hadronic interac-
tions of the primary cosmic rays in the atmosphere, as
well as to the inelasticity. To disentangle the effects a very
careful analysis of these data should be performed.
iv) Study of the hadronic and electromagnetic components
of cosmic rays. Here one can study the energy spectrum
of hadrons at different depths in the atmosphere and the
altitude dependence of the inelasticity. According to the
works [11–15], the data on the altitude dependence of the
inelasticity of the electromagnetic component and on the
energy spectrum of the nucleonic component suggest (at
least, at high energies) the inelasticity not decreasing with
the rise of energy.

As one can see from this short review, by now there is
no definite conclusion regarding the energy dependence of
the inelasticity coefficient, in spite of the numerous data
from collider and cosmic ray experiments. One could ex-
pect that the employment of reliable theoretical models
will help to get out of this difficulty. At the same time, the
QCD, the best candidate for the theory of strong interac-
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tions, cannot be of help here because of the dominance of
soft processes.

At different times many various theoretical models
were developed to provide descriptions of soft hadronic
interactions. But the situation here is just the reflection
of the experimental state. There are three large groups of
the models which differ by the inelasticity behavior pre-
dictions [16,6].
a) Models predicting a steep decrease of the inelasticity.
Those are such models as, for example, statistical model
[17], geometric model [18], Wdowczyk-Wolfendale model
[19–22], hydrodynamic model [23,24], modified dual par-
ton model [25,26], valon-gluon model [27,8] and fire-tube
model [28,29].
b) Models with a moderate rise of the inelasticity. Here
let us cite as examples mini-jet model [30,31] (see, how-
ever, the work [29] where a decreasing inelasticity was also
obtained in the context of this model), interacting gluon
model (after including a semihard component to the origi-
nal version) [32,33] and quark-gluon string model [34,35].
c) Models giving rise to a rapid increase of the inelasticity.
A glowing example of this class of models is the QCD
Pomeron model [36]. A glowing example of this class of
models is the QCD Pomeron model [36].

In the present paper we study the energy dependence
of the partial inelasticities in the framework of the dual
parton model (DPM). This model (see, for instance, [37–
43]) was developed and extended over the past fifteen
years and now it is successfully used for describing the in-
clusive hadronic spectra in a wide range of energies. The
model proved to be able not only to suggest some theoret-
ical basis for understanding a great deal of soft hadronic
physics phenomena, but also to give certain predictions for
high and very high energies. The model provides a fairly
good description of experiment both in the central region
and fragmentation regions. It reproduces the violation of
Feynman scaling, observed in experiment.

In this work we focus our attention not only on cal-
culations of the inelasticity coefficient in the given model,
but also upon the question of the mechanisms which lead
to the inelasticity with an energy behavior peculiar to this
model. Simple analytical expressions are derived which de-
scribe the behavior of the partial inelasticities at high en-
ergies.

2 Partial inelasticities

Along with the total inelasticity, the partial inelasticities
are often used in practice, which are, by definition, the
fractions of energy carried over by the secondaries of a
given sort i

Ki =
∫ 1

0
x̄

dNi (x;
√

s)
dx

dx

=
2√
s

∫ ymax

0
E∗ (

y;
√

s
) dNi (y;

√
s)

dy
dy. (2.1)

Here x = P ∗/P ∗
0 is Feynman’s variable,

x̄ =

√
x2 +

4 〈m⊥〉2
s

, (2.2)

(we keep in mind that at high energies P ∗
0 ≈ √

s/2),
m⊥ is the transverse mass of a produced hadron, y =
arsinh (xP ∗

0 / 〈m⊥〉) is the hadron rapidity and dNi

dy is the
inclusive spectrum of particles i. It is seen from (2.1) that
in order to calculate the partial inelasticities over a wide
region of energies, one has to know the inclusive spectrum
both for the corresponding broad range of primary ener-
gies and for the full rapidity range. From collider data
it is evident that a strong violation of Feynman scaling
is observed in the central region over a full energy range
of modern accelerators and so the energy dependence of
the inclusive spectra has to be taken into account at any
calculations of Ki (

√
s). It is clear that in the case of the

rigorous scaling the inelasticity parameter has to be a con-
stant. In contrast, a strong violation of Feynman scaling
could lead to an appreciable energy dependence of the in-
elasticity.

Some questions concerning the violation of the Feyn-
man scaling law were studied in the context of the DPM
in our previous works [44,45]. It was found (see [44]) that
at high energies the rise of the so-called plateau height
dN
dy |y=0 can be described by a simple relation

dN

dy
|y=0= 〈n (s)〉 · a ·

(
1 − b

ln (s/s0)

)
, (2.3)

where a, b, s0 are some constants. The interaction of
hadrons is considered in the DPM as a production of
colored chains stretched between the colliding particles,
with the subsequent fragmentation of the chains into the
secondary hadrons. The term 〈n (s)〉 in (2.3) denotes the
average number of the produced chains, and its energy
dependence is as follows:

〈n (s)〉 '
(

s

s0

)α′

, (2.4)

where α′ = αP − 1 ≈ 0.11 (αP is the Pomeron intercept)
[41]. The expression

(
1 − b

ln(s/s0)

)
in the right-hand side

of (2.3) describes the violation of scaling for an individual
chain. This effect is due to the internal motion of quarks
in a hadron [45].

It was also found out [44,45] that for x satisfying the
condition (we will call it “the fragmentation region condi-
tion”)

x >

√
〈m⊥〉
2
√

s
, (2.5)

one comes to the fragmentation region behavior with rel-
atively small violation of scaling.

Now we can apply these results to the problem of the
energy dependence of the partial inelasticities. It is easy
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to see that the partial inelasticity can also be written in
the following form:

Ki =
∫ 1

0

dNi (y (x) ;
√

s)
dy

dx. (2.6)

Having in mind expression (2.5), let us divide the interval
of integration into the central and fragmentation subin-
tervals

Ki =
∫ x0

0

dNi (y (x) ;
√

s)
dy

dx

+
∫ 1

x0

dNi (y (x) ;
√

s)
dy

dx, (2.7)

where

x0 =

√
〈m⊥〉
2
√

s
. (2.8)

Since dN
dy ≤ dN

dy |y=0, for the first term in the right-hand
side of (2.7) (the central region term) from expressions
(2.3), (2.4) we obtain

∫ √
〈m⊥〉/(2√

s)

0

dNp (y (x) ;
√

s)
dy

dx (2.9)

≤
√

〈m⊥〉
2
√

s

dNp (y;
√

s)
dy

|y=0'
(

s

s0

)α′−0.25

→
s→∞ 0.

It can be shown (see Appendix) that in the fragmen-
tation region defined in compliance with expression (2.5)
the inclusive spectra of the DPM are presented in the form

dNi(y(x);
√

s)
dy ≈ ∑

c

∫ 1
x

ρc (x′;
√

s) D̃c→i
(

x
x′

)
dx′,

(c counts all possible chains).
(2.10)

Here ρc is a momentum distribution function of a quark
situated at an end of the chain c

ρc

(
x;

√
s
)

=
∑

n

σn (
√

s)[∑
n

σn (
√

s)
] ρc

n

(
x;

√
s
)
, (2.11)

ρc
n is a momentum distribution function of a quark for

the process where exactly n Pomeron-cuts are involved,

σn (
√

s) /

[∑
n

σn (
√

s)
]

is a probability of exchange by n

Pomeron-cuts, D̃c→i is a function describing the fragmen-
tation of the quark of c into the hadron i. From (2.7)–
(2.10) it is easy to obtain that the following relation is
valid for the partial inelasticity at high energies:

Ki =
∑
c

∫ 1
x0

dx
∫ 1

x
ρc (x′;

√
s) D̃c→i

(
x
x′

)
dx′

+(terms vanishing with the rise of energy)
(2.12)

Simple to see that the integral term in the right-hand side
of (2.12) can be presented as∫ 1

x0

dx

∫ 1

x

ρc

(
x′;

√
s
)
D̃c→i

( x

x′
)

dx′

=
∫ 1

x0

ρc

(
x′;

√
s
)

dx′
∫ x′

x0

D̃c→i
( x

x′
)

dx

=
∫ 1

x0

x′ρc

(
x′;

√
s
)

dx′
∫ 1

x0/x′
D̃c→i (x) dx

=
∫ 1

0
x′ρc

(
x′;

√
s
)

dx′
∫ 1

0
D̃c→i (x) dx

−
∫ x0

0
x′ρc

(
x′;

√
s
)

dx′
∫ 1

0
D̃c→i (x) dx

−
∫ 1

x0

x′ρc

(
x′;

√
s
)
dx′

∫ x0/x′

0
D̃c→i (x) dx. (2.13)

Let
M = max

x∈[0,1]
D̃c→i (x) (2.14)

(very often a simple parameterization is used for the frag-
mentation functions: D̃ (x) = a · (1 − x)b, in this case
M = a), then∫ x0

0
x′ρc

(
x′;

√
s
)

dx′
∫ 1

0
D̃c→i (x) dx

≤ M

∫ x0

0
x′ρc

(
x′;

√
s
)

dx′. (2.15)

In the DPM the softest momentum distributions are ones
of sea quarks: ρsea ' 1/x [39,43]. So, even in the most
unfavorable case one has

∫ √
〈m⊥〉/(2√

s)

0
x′ρc

(
x′;

√
s
)

dx′

×
∫ 1

0
D̃c→i (x) dx '

√
〈m⊥〉√

s
. (2.16)

Likewise, ∫ 1√
〈m⊥〉/(2√

s)
x′ρc

(
x′;

√
s
)

dx′

×
∫ √

〈m⊥〉/(2√
s)/x′

0
D̃c→i (x) dx

≤ M

√
〈m⊥〉
2
√

s

∫ 1√
〈m⊥〉/(2√

s)

×ρc

(
x′;

√
s
)

dx′ '
√

〈m⊥〉√
s

(2.17)

(in the last relation in (2.17) we took into account that
the momentum distribution functions are normalized to
unity:

∫ 1
0 ρ (x;

√
s) dx = 1). From (2.12), (2.13), (2.16),

(2.17) we find

Ki ≈
∑

c

∫ 1

0
x′ρc

(
x′;

√
s
)

dx′

×
∫ 1

0
D̃c→i (x) dx .

(2.18)
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Since, by definition,

〈x〉c =
∫ 1

0
xρc

(
x;

√
s
)

dx, (2.19)

we finally obtain a simple equation for the inelasticity pa-
rameter of the DPM

Ki ≈
∑

c

〈x〉c

∫ 1

0
D̃c→i (x) dx. (2.20)

It may be interesting to watch the conformity of (2.20)
to the energy conservation law. Adding the fraction of en-
ergy K0 retained by the leading particles and summing
over all new produced hadrons, to obey the energy con-
servation one has to obtain∑

i

Ki = 1. (2.21)

As already noted, interaction of hadrons in the DPM is
divided into two stages. For the first stage, where colored
chains are produced, the energy conservation is included
in the relation ∑

c

〈x〉c = 1, (2.22)

and for the fragmentation stage it is taken into account
by the sum rules

∑
i

∫ 1

0
D̃c→i (x) dx = 1. (2.23)

Taking the sum in (2.20) over all possible hadrons and
using two last equations, we derive

∑
i

Ki =
∑

i

∑
c

〈x〉c

∫ 1

0
D̃c→i (x) dx

=
∑

c

〈x〉c ·
∑

i

∫ 1

0
D̃c→i (x) dx = 1 (2.24)

in agreement with (2.21).
It should be mentioned that expressions similar to

(2.10) (obtained here in the framework of the DPM) were
widely used previously in various quark cascade models for
describing the inclusive spectra in the fragmentation re-
gions (see, for instance, review [46] and references therein).
But it is also important to realize that in order to apply
these expressions to the study of the inelasticity coefficient
one must define what is actually meant by the fragmen-
tation regions since the energy behavior of the resulting
inelasticity may depend on this, and thus just the choice
of the inclusive spectra in the fragmentation regions in
the form of (2.10) does not automatically lead to such en-
ergy dependence as is prescribed by (2.20). Very often a
somewhat intuitive definition of the fragmentation region
as the region “say, x > 0.1” is used. If, for example, we as-
sume that in the region x < 0.1 (or, even more generally,
in the region x < x0 where x0 does not change like 1/s1/4

as the right-hand side of (2.5) but is some fixed value) the

Fig. 1. 〈x〉 vs. energy for diquark, valence quark and sea quarks
in nucleon

spectra continue to rise as in (2.3), (2.4), i.e. like sα′
, then

the inelasticity could increase with the rise of energies like
sα′

, too. Some other choice of the fragmentation region
or/and other assumptions of the energy behavior of the
spectra would bring some other energy dependence of the
inelasticity (see, for example, [47]). So we see that the en-
ergy dependence of the inelasticity, predicted by (2.20), is
due to the correct description of the energy behavior of the
spectra in the central region and fragmentation regions as
well as to the proper fragmentation region condition (2.5).

Condition (2.5) has a simple physical sense [45]. For
a given c.m.s. value of rapidity y and for a chosen chain
one can find the corresponding rapidity yc in the chain’s
center of mass system. The region around the center yc =
0 of the chain is also the central region for the chain’s
fragmentation. But the center of any chain can lie only on
the left from ymax/2, so for the rapidities

y > ymax/2 (2.25)

there is no any chain with the central region situated near
such values. It is easy to check that in terms of the vari-
ables x this relation leads to the 1/s1/4 behavior of its
right-hand side, just as in (2.5). The complete condition
(2.5) can be obtained from (2.25) by a more comprehen-
sive derivation if one also takes into account the threshold
effects.

Let us turn back to the (2.20) for the inelasticities.
Fragmentation functions standing there can be found, for
example, from positron-electron data with the help of the
jet universality principle. Values of 〈x〉 can be calculated
in the model itself (see (2.11), (2.19)). In Fig. 1 we show
〈x〉 for diquark, valence quark and all sea quarks for dif-
ferent energies. At calculations of ρ we used ρn from [39]
with µ = 0.1 GeV , and topological cross sections σn with
parameters defined in [41]. From Fig. 1 it is seen that 〈x〉
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Fig. 2. Partial inelasticity for the process p + p → charged
pions + X. Solid line – numerical DPM’s calculations, dashed
line – calculations according to (2.20)

values change only slightly for all kinds of quarks in a wide
range of energies.

In Fig. 2 the partial inelasticity numerically calculated
in the DPM for the reaction p + p̄ → charged pions
is presented as a function of energy (solid line). One can
see from the figure that at high energies this inelasticity
becomes nearly a constant. Such behavior can be readily
understood from the above discussion. Since at high en-
ergies 〈x〉 values change only weakly and fragmentation
functions D̃ used in the DPM have scaling forms, from
(2.20) valid at high energies it is obvious that the par-
tial inelasticities can not change too much with energies
either. And this is just what is seen in Fig. 2.

One can also directly use (2.20) for calculations of the
partial inelasticities. Relevant results are shown in Fig. 2
by the dashed line. From this figure we notice that at
high energies there is a very good agreement between both
curves. In fact, as it is seen from the figure, (2.20) begins to
work pretty well here already from energies 50÷100 GeV .

Using an approximate relation Ktot ≈ 3
2Kπ± (see, for

example, [15,29,48,49]), we can estimate the total inelas-
ticity from the data of Fig. 2. With reference to Fig. 2 we
find Ktot ≈ 0.47. This value is very close to one measured
by ISR: Ktot = 0.5 [1]. The cosmic ray experiments seem
to favor the total inelasticity with the value around 0.5 in-
dependent on energy, too [22,50] but because of the large
errors the data of such experiments are rather inconclusive
(see discussion in Sect. 1).

It should be emphasized that the results obtained in
this section do not agree with the inelasticity energy be-
havior predictions made from some kind of a qualitative
analysis in work [43]. There the elasticity coefficients 〈En〉
/E were presented as a decreasing function of the col-
lision number for PLab = 200 GeV . The relevant con-

clusion made there is as follows: since 〈n (s)〉 increases
with energies, one should expect an increase of the in-
elasticity parameter according to the relation Ktot = 1 −〈
E〈n(s)〉

〉
/E. We argue, however, that because of rather

wide n−distributions of the weights σn (
√

s) /

[∑
n

σn (
√

s)
]
,

it is not satisfactorily to evaluate the energy dependence
of Ktot in such way, just trough 〈n (s)〉. Another thing that
has to be also taken into account is an energy dependence
of the ratio 〈En〉 /E. Even being small, this effect should
be considered properly. The calculations show that in the
DPM the ratio 〈En〉 /E increases with the rise of energies
what prevents the expected decrease of elasticity due to a
smooth rise of 〈n (s)〉.

3 Scaling violation problem
and the inelasticity coefficient

A very convenient parameterization of the inclusive
hadronic spectra with violation of Feynman scaling was
proposed by Wdowczyk and Wolfendale [19–22]

2E∗
√

s

d2N

dxdP⊥
= k (s, s0)

(
s

s0

)α

f

(
x ·

(
s

s1

)α

; P⊥

)
,

(3.1)
where k and f are some functions, s0, s1 and α are pa-
rameters. It was found that formulae of this type (WW-
formulae) can adequately describe collider data at mod-
erate as well as at high energies, and for the reaction
p + p̄ → charged particles the following relations were
obtained [14,15,48]:

∫
f

(
x ·

(
s
s1

)α

; P⊥
)

dP⊥ =
(
1 −

(
s
s1

)α

x
)4

,

α = 0.26, s1 = 3.4 · 103 GeV2;
(3.2)

k (s, s0)
(

s
s0

)α

= A ·
(

s
s0

)α′

,

A = 1.67, α′ = 0.11 s0 = 6.3 · 102 GeV 2.

(3.3)

Therefore,

x̄
dNp + p̄→charged particles

dx

= A ·
(

s

s0

)α′ (
1 −

(
s

s1

)α

x

)4

. (3.4)

An important thing about (3.4) is that this equation
leads to the inelasticity decreasing as the energy increases:

Kp + p̄→charged particles

=
∫

x̄
dNp + p̄→charged particles

dx
dx

=
1
5

A ·
(

s

s0

)α′

/

(
s

s1

)α

→
s→∞ 0, (3.5)
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and the energy behavior sα′−α of the inelasticity coincides
with the energy behavior of the parameter k (s, s0). Such
behavior, however, turned out to be in a certain contra-
diction with the results of cosmic ray experiments. To jus-
tify the formula various assumptions were made, in some
of them special h-particles were postulated which, being
hadrons unobservable by collider experiments, could com-
pensate for the decrease in the inelasticity; in others pa-
rameters α and α′ were chosen close in magnitudes to
slow down the fall of the inelasticity (see discussions in
the works [14,15,48,49]).

In our work [45] it was found out that the DPM’s pre-
dictions about the Feynman scaling violation effects for
the inclusive spectra at the central region can be presented
in the WW-form and the physical sense of such parameter-
ization was discussed. At the same time, according to the
results of the present work, at high energies the inelastic-
ity of the DPM can not be a steeply decreasing function.
Now we are going to show, even without any special as-
sumptions, that these facts do not contradict each other.
We had emphasized in the work [45] that according to the
DPM, the WW-formula (3.4) can be applied in a rather
limited interval of x variable. It was found that beginning
from the value x0 =

√
〈m⊥〉 / (2

√
s) an alteration in the

mechanisms of the production of the secondary hadrons
comes and the fragmentation region behavior with rather
small violation of scaling starts. So at calculating the in-
elasticity coefficient one should divide the full region of
variable x into the central region and the fragmentation
region, just as it was done in (2.7). Then the central region
part of K can be expressed by the product of the height
of the distributions into the width of the central region:

Kcentr '
(

s

s0

)α′ √
m⊥
2
√

s
'

(
s

s0

)α′−0.25

, (3.6)

(cf. (2.9)). For the parameter α a value 0.25 was obtained
in the framework of the DPM [45]. This value is very close
to one of (3.2) and just coincides with the value also ob-
tained from experiment in [2]. So

Kcentr '
(

s

s0

)α′−α

, (3.7)

and this is essentially the same energy behavior as in (3.5).
On the other hand, due to the approximate scaling in the
fragmentation region, Kfragm is approximately a constant
and so at high energies the main contribution to the inelas-
ticity comes from Kfragm. This simple mechanism allows
to retain the inelasticity almost constant and gives us a
further view at the results obtained in the present work.

An example of the model with the inelasticity being an
increasing function of energy is the QCD Pomeron model
mentioned in Sect. 1. According to this model, the inelas-
ticity coefficient can be presented in the form

K = 1 −
∑

n

σn (
√

s)[∑
n

σn (
√

s)
] 〈Xn〉 , (3.8)

where 〈Xn〉 is an average energy fraction retained by the
leading nucleon after the exchange by n Pomerons. The
rise of the inelasticity in this model is due to the growth
with energy (owing to the increase of σn) of an average
number of the Pomerons involved in the reaction. Equa-
tion (3.8) can be compared with (2.20) derived in this
work. Taking into account (2.11), (2.19), we obtain in the
DPM

Ki =
∑

c


∑

n

σn (
√

s)[∑
n

σn (
√

s)
] 〈

xn

(√
s
)〉

c




×
∫ 1

0
D̃c→i (x) dx. (3.9)

In contrast to (3.8), here 〈xn〉c is an average fractional en-
ergy carried by a quark in hadron and so this last formula
has a different sense from (3.8). The rise of σn with energy
can result in the change of 〈x〉c =

∑
n

〈xn (
√

s)〉c σn (
√

s) /[∑
n

σn (
√

s)
]

but due to the normalization (2.22) this may

have no effect on Ki: if, for example, the terms∫ 1
0 D̃c→i (x) dx are alike for all c, then the corresponding

inelasticity

Ki =
∑

c


∑

n

σn (
√

s)[∑
n

σn (
√

s)
] 〈

xn

(√
s
)〉

c




×
∫ 1

0
D̃c→i (x) dx

= qi

∑
c


∑

n

σn[∑
n

σn (
√

s)
] 〈xn〉c


 = qi (3.10)

does not depend on 〈x〉c at all (in (3.10) we defined qi =∫ 1
0 D̃c→i (x) dx). In the general case and even for the vio-

lated scaling this would similarly help to reduce a possible
change of the inelasticity in the DPM at high energies.

Up to this moment we used the scaling fragmentation
functions D̃ (x). It can be shown with some general as-
sumptions of the form of D̃ that (2.20) remains also valid
for the case of the non scaling fragmentation functions.
Effects of this sort are predicted by the QCD at high
energies. The energy behavior of the inelasticity in this
situation depends on the non scaling corrections to the
fragmentation functions. Such case is considered in the
modified dual parton model [25,26].

4 Conclusions

In this work the energy dependence of the partial inelas-
ticities was studied in the framework of the dual parton
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model. In order to obtain the value of the inelasticity pa-
rameter one should know the inclusive hadronic spectra in
the full range of rapidities. Unfortunately, from the present
experiments such data are not provided with the necessary
accuracy over a wide region of energies. Such situation had
naturally caused different conclusions about the possible
energy behavior of the inelasticity.

The main attention of this work was paid to the study
of the mechanisms which lead to a certain energy behavior
of the partial inelasticities. A simple analytical formula
(2.20) describing the partial inelasticities at high energies
was derived. This formula has a clear physical sense. Being
an average fraction of energy carried away by secondaries,
the inelasticity is expressed by the product of the two
factors: the average quark fractions of energy 〈x〉c and the
full probability

∫ 1
0 D̃c→i (x) dx for quark c to fragment

into a hadron i.
In the DPM, as well as in some other models (see, for

instance, [6]), the scheme of multiparticle production can
be symbolically depicted as

multiple production

= (quark distribution functions)
⊗ (universal fragmentation) .

Here we would like to emphasize once more that it does
not undeniably imply the possibility of the presentation of
the partial inelasticities in the form (2.20). In the DPM the
presentation of the inelasticities in the factorized form of
(2.20) is not true for the central region where fragmenta-
tion from both projectile hadron and target hadron takes
place. For the central region one has the growth of the in-
clusive spectra as sα′

where α′ ≈ 0.11, and in order to find
the inelasticity as a function of energy one must clearly de-
termine the width of the central region. It proved to be
[44] that in the DPM in the area (2.5) the fragmentation
region behavior with relatively small violation of scaling
is seen and in this area the relation (2.10) is valid for
the inclusive spectra (see Appendix). The central region
part of the DPM’s inelasticity is then a decreasing func-
tion of energy and its energy behavior agrees very well
with one obtained from the WW-formula (3.4). We argue,
however, that at high energies the main contribution to
the inelasticity comes from the fragmentation region and
the partial inelasticities can be found using (2.20). As a
matter of fact, for the reaction p + p̄ → charged pions
this approximate formula begins to work already from en-
ergies

√
s = (50 ÷ 100) GeV . Estimations show that Ktot

obtained in the DPM is about 0.47. This value is very
close to the results of measurements at ISR.

Here we investigated the inelasticity parameter defined
according to (2.1). Similar definition also have the so-
called Z-factors

Zi =
∫ 1

0
xγ dNi

dx
dx, (4.1)

where power γ comes from the primary energy spectrum.
It can be shown that in the DPM at high energies for the

Z-factors the expression analogous to (2.20) takes place
as well

Zi ≈
∑

c

〈xγ〉c

∫ 1

0
D̃c→i (x) dx. (4.2)

A more detailed study of the energy behavior of the Z-
factors in the framework of the dual parton model will be
a subject of our separate work.

A Appendix

Here we will show that in the dual parton model a presen-
tation of the inclusive spectra in the form (2.10) is valid
all over the region (2.5). According to the DPM, the inclu-
sive spectra of hadron i can be found from the following
expressions ([37–40, 43]):

dNi (y (x) ;
√

s)
dy

=
∑

n

σn (
√

s)[∑
n

σn (
√

s)
] ∑

cq1;q2

∫ 1

x

dx1 ρq1
n (x1)

×
∫ 1

r

dx2 ρq2
n (x2) D̃q→i (z) ,

z =
2 〈m⊥〉√
x1x2s

sinh
(

y − 1
2

ln
(

x1

x2

))
. (A.1)

Here q1 and q2 are the quarks situated at the different
ends of the chain c (the sum with the index cq1;q2 in (A.1)
goes over all possible chains), and r = 2 〈m⊥〉 /

√
s origi-

nates from a natural threshold on the production of the
secondary hadron with the transverse mass 〈m⊥〉. The
fragmentation function D̃q→i (z) (= z̄Dq→i (z), q is either
q1 or q2) is taken in the DPM according to the relation:

D̃q→i (z) =




D̃q1→i (z) if z > 0

D̃q2→i (|z|) if z < 0.
(A.2)

For the following it is convenient to introduce a new vari-
able g

g = e2y. (A.3)
It is easy to see that in the considered region of x a simple
relation between x and g takes place at high energies

g ≈
(

x
√

s

〈m⊥〉
)2

. (A.4)

For the parameter z from (A.1) we obtain

z =
〈m⊥〉

x1x2
√

s

(
x2

√
g − x1√

g

)
. (A.5)

It is apparent that at

gr > 1 (A.6)

x2
√

g is always greater than x1/
√

g for any x1 and x2 from
the ranges of integration in (A.1). Expression (A.6) can be
written, in view of (A.4), as

x >

√
〈m⊥〉
2
√

s
, (A.7)
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what coincides with the definition of the fragmentation
region, given in the main text (see (2.5)). In this region
one always has z > 0 and so, in compliance with (A.2),
here D̃q→i (z) = D̃q1→i (z). The expression (A.1) for the
inclusive spectra assumes now the form

dNi (y (x) ;
√

s)
dy

=
∑

n

σn (
√

s)[∑
n

σn (
√

s)
]

×
∑

cq1;q2

∫ 1

x

dx1 ρq1
n (x1)

∫ 1

r

dx2 ρq2
n (x2)

×D̃q1→i

(
x

x1
− 1

g

x

x2

)
.

(A.8)

Let us expand the function D̃q1→i from the right-hand side
of (A.8) as a power series in 1

g
x
x2

(to simplify notations we
will omit for the present the symbol q1 → i at the function
D̃)

D̃

(
x

x1
− 1

g

x

x2

)

=
∞∑

k=0

(−1)k

k!
1
gk

(
x

x2

)k

D̃′(k)
(

x

x1

)
. (A.9)

Since x2 ≥ r, each successive term in this expansion has
at least one extra power of x/ (gr). From (A.4) it follows
that in the region (2.5) this does not exceed

√
m⊥/ (2

√
s).

So at high energies one can restrict the sum (A.9) to the
first leading summand. In this approximation,

dNi (y (x) ;
√

s)
dy

≈
∑

n

σn (
√

s)[∑
n

σn (
√

s)
]

×
∑

cq1;q2

∫ 1

x

ρq1
n (x1) D̃q1→i

(
x

x1

)
dx1 (A.10)

what differs from (2.10) in notations only (see (2.11)).
From the derivation it is clear that x0 =

√
m⊥/ (2

√
s) is

the minimal value of Feynman’s variable x for which the
presentation of the inclusive spectra in the form (A.10)
still takes place. For any lesser value of x the contribution
from the fragmentation of the quark q2 has to be taken
into account.
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