
332 

IMPORTANT FOCUSING PROPERTIES OF THE MAGNETIC STRUCTURE  
OF ISOCHRONOUS CYCLOTRONS WITH HIGH SPIRALING ANGLE OF THE POLE TIPS 

D.A. Amerkanov, S.A. Artamonov, E.M. Ivanov, G.A. Riabov, V.A. Tonkikh 

1. Introduction

Magnetic structures with a large spirality angle of pole tips were investigated in a number of works and 
are used in superconducting cyclotrons, H– ion cyclotrons, etc. With the design and construction of an 80 MeV 
isochronous H– cyclotron, such studies were continued and extended. In this work, a relatively simple approach 
for analysing the spiral structure is proposed.  

The magnetic structure with a large spirality angle of the pole tips is used in cases when vertical focusing 
from the flutter (field difference in the valley and the sector) is insufficient and it is necessary to add the angle 
focusing. This situation is typical for superconducting cyclotrons and for cyclotrons that accelerate negative 
hydrogen ions. Moreover, at Joint Institute for Nuclear Research (JINR) in Dubna, such structures were 
investigated and a cyclotron and a synchrocyclotron with sectors in the form of an Archimedes spiral with a 
maximum spirality angle of up to 70 degrees were built. Numerical calculations of the magnetic field for an 
isochronous superconducting cyclotron with spiral sectors in the approximation of their uniform magnetization 
were carried out [1].  

Two effects were noted: a decrease in the flutter in the central region with the introduction of spirality and 
a mismatch between the spirality of the sector iron and the magnetic field. However, calculations made for a 
specific geometry are not applicable in the case of a different design.  With the construction of an isochronous 
cyclotron for accelerating H– ions up to 40–80 MeV [2, 3], studies of the focusing properties of spiral structures 
were continued and expanded. Modern 3D software codes simplify the design of the magnetic field of any 
configuration by using trial and error. However, to speed up the procedure and to reduce the number of options 
for a 3D analysis, it is useful to first perform a simplified and visual analysis of the system and estimate the 
importance of various parameters in the framework of a simpler 2D approximation. 

2. Development of two-dimensional approximation

2.1. Optimization of the magnet gaps 

As a first approximation, the hill (2gh) and valley (2gv) gaps for each fixed sector thickness (hs) were 
selected using 2D POISCR calculations based on the proposed new fill factor method. In this method, 
a 3D problem is reduced to a 2D one. The iron rings or the so-called shims mounted on the magnet poles and 
providing an isochronous rise in the field are calculated using a 2D program with a reduced value of the 
magnetic permeability μnew(𝐵𝐵) = μ(𝐵𝐵) ⋅ 𝐶𝐶. The permeability is reduced by a factor C(r) – the so-called filling 
factor equal to the ratio of the azimuthal length of the sector to the length of the periodicity element at each 
radius r. The gap of the magnet obtained in this way corresponds to the gap of the hill, and there is no additional 
shim in the valley. Thus, two variants of the gaps of the main magnet and the gaps of the hills and the valleys 
were analysed. The parameters of these variants are presented in the caption to Fig. 1. 
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Fig. 1. The dependence of the flutter on the 
dimensionless parameter x  = r / N · gh, where 
N = 4, for two options: 1 – 2gv = 386 mm, 
2gh = 170 mm, hs = 108 mm; 2 – 2gv = 284 mm, 
2gh = 145 mm, hs = 69 mm; 3 – a variant of uniform 
magnetization for the case of the geometry of 
the first variant 

2.2. Flutter problem 

The azimuthal variation of the magnetic field [1] is determined by the so-called flutter F(r): 

𝐹𝐹(𝑟𝑟) = < (𝐵𝐵 − < 𝐵𝐵 >)2 >/< 𝐵𝐵 >2,  <. . . >= (2π)−1 ∫ . . .2π
0 𝑑𝑑θ. 

The flutter can be represented as a Fourier harmonics expansion of the azimuthal variation of the magnetic 
field. The fundamental contribution to the expansion is made by the general focusing harmonic associated with 
the number of sectors and periodicity elements (in our case, N = 4). If we denote the value of the fundamental 
focusing harmonic f = BN / <B>, then F = f 2/2. 

An analytical calculation of the flutter is a complex and practically impossible problem, therefore, 
approximate methods were used. In particular, in Ref. [4], an expression was obtained for the general harmonic 
of the magnetic field variation in an isochronous cyclotron in the approximation of uniform magnetization of 
the sectors of the magnet, 

BN = 8M sin (2πa/d)exp (–2πgh/d), 

where 2a is the length of the sector along the azimuth for a given radius r; 2gh is the gap in the hill; d is the 
period of the structure, equal to the total length of the hill and valley, 4πM = 21 kG. It follows from this 
expression that for an isochronous cyclotron with a period of the magnetic field structure equal to d = 2πr / N, 
where N is the number of sectors, the flutter grows with increasing radius according to the law 

𝐹𝐹~ 𝐵𝐵𝑁𝑁
2

2
~ exp( − 2/𝑥𝑥),  𝑥𝑥 = 𝑟𝑟/𝑁𝑁 ⋅ 𝑔𝑔h.          (1) 

Although this approximation is insufficient for obtaining accurate quantitative estimates, it allows, in a 
unified manner, to get an idea of the relationship between different parameters of the magnetic structure. 
Moreover, the introduction of the dimensionless parameter x enables the comparison of different variants of 
the structures. In particular, the flutter rises as the gap in the hill decreases and falls as the number of sectors 
increases. 

The maximum flutter value corresponds to the case when the azimuthal extent of the sector and the valley 
are equal. In this case, a = 0.25d and sin(π/2) = 1. For the case when the parameter x becomes less than 0.5, 
the flutter drops very sharply, i. e., at radii r ≤ 0.5Ngh, the azimuthal variation becomes ineffective, and 
focusing tends to zero. The results of these calculations are shown with curve 3 in Fig. 1. 

The dependence of the flutter on the radius can be calculated using 3D programs. However, they are usually 
a commercial product. Therefore, in our case, to speed up and simplify the calculations, we used 2D 
approximate calculations. The flutter can be estimated using a 2D program if we replace the calculation of the 
edge effect along the azimuth with the calculation of the edge effect along the radius of the two-dimensional 
magnet with a gap in the form of teeth and valleys along the radius. In this case, the gap variation of a 2D-
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magnet along the radius corresponds to the length and gaps of the sector and valley along the azimuth of the 
investigated 3D magnet.  

Simple estimates carried out for the C-80 cyclotron show that the structure with straight sectors does not 
provide the necessary vertical focusing; therefore, it is necessary to use the following effect. 

2.3. Influence of the spirality effect 

As it is well known, the frequency of vertical oscillations, which determines the vertical focusing, can be 
expressed using the following approximation: 

 ν𝑧𝑧2 ≈ −𝑘𝑘 + 𝐹𝐹 ⋅ 𝑆𝑆(𝑟𝑟, γ),  𝑆𝑆(𝑟𝑟, γ) = 1 + 2𝑡𝑡𝑔𝑔2γ,   (2) 

where k is the rate index of the average magnetic field growth along the radius, 

𝑘𝑘 = �
𝑟𝑟

< 𝐵𝐵 >
� �
𝑑𝑑 < 𝐵𝐵 >

𝑑𝑑𝑟𝑟
� ≈

2𝑊𝑊
𝐸𝐸0

. 

Here W is the kinetic energy, E0 = 938 MeV is the rest mass of the proton, γ is the spirality angle. The 
frequency of axial oscillations is determined by two oppositely acting terms – the defocusing of the 
isochronous rise of the mean field and the focusing action of the azimuthal variation of the field. The task is 
to select F and γ for each value of the energy W so that νz

2   remains greater than zero during acceleration. At 
the same time, to limit the dissociation of negative ions, it is necessary to strive for the lowest possible value 
of the magnetic field in the hill, i. e. to the minimum flutter value. The spiraling sector provides an increase in 
focusing force due to the non-perpendicular angle of particle entry into the sector region. Effectively, the flutter 
F is multiplied by the coefficient 𝑆𝑆 (𝑟𝑟, γ); however, in a structure with a large spirality angle, the increase in 
focusing force is noticeably less [1] than could be expected from the above formula. This is due to a decrease 
of the flutter when the spirality angle is introduced and a mismatch between the iron and the magnetic spirality 
angles.  

There is a simple geometric explanation for the first effect. With a large spirality angle, the difference 
between the sector length along the azimuth (AB in Fig. 2) and the width of the A1B1 sector determined from 
geometric considerations, becomes significant. In the case of straight sectors, the flutter is determined by the 
magnetic field difference in the hill and the valley. In this case, the field falls off along the azimuth. When a 
spiraling angle is introduced, the distance between the sectors along a line perpendicular to the centre-line of 
the sector is much smaller than the distance along the azimuth. This leads to a decrease in the effective length 
of the sector A1B1 and, accordingly, to a decrease in the length of the valley. From geometric considerations, 
we can conclude that the effective length of the A1B1 sector is approximately equal to the length of the sector 
along the azimuth AB multiplied by a factor equal to cosγ, i. e. A1B1 ≈ AB cosγ. With a decrease in the length 
of the sector, the effective length of the valley and the period of periodicity decrease. In this case, the 
dimensionless parameter x, introduced in expression (1) and related to the length of the periodicity period, will 
also decrease and becomes xeff = x cosγ. According to Fig. 1, a decrease in the value of the parameter 
xeff  = x cosγ leads to a shift along the graph towards lower flutter values. At intermediate and large radii, the 
spirality causes an increase in the edge focusing and a decrease in the flutter, and the total effect leads to an 
overall increase in focusing. However, at small radii, the introduction of spiraling reduces the effective sector 
length and this can lead to a very sharp drop in the flutter and a total decrease in focusing. The total effect of 
the introduction of the spiral sectors can be characterized by a parameter that is the product of two factors: the 
flutter F and S (r, γ). Since the flutter drops sharply at xeff < 0.5, the introduction of spiraling in the central 
region leads to a decrease in focusing. For each radius, it is possible to calculate the limiting value of the 
spiraling angle, exceeding which spiraling does not give an increase in focusing. This value for each parameter 
x can be estimated by finding the solution for the following equation: 

     𝑈𝑈(𝑥𝑥, 𝛾𝛾) = (𝐹𝐹(𝑥𝑥 cos γ)/𝐹𝐹(𝑥𝑥)) ⋅ (1 + 2tg2γ) − 1 = 0,      (3) 

where F(x) is a function of the type shown in Fig. 1. 
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Fig. 2. There is a difference between the sector 
length along the azimuth AB and the “effective” 
length A1B1 at large spiraling angles. The effective 
sector width corresponding to its average line for 
a given r is equal to А1В1  ≈ АВ cosγ 

Figure 3 shows the limiting spiraling angle calculated by formula (3) as a function of the radius for the 
case of the C-80 cyclotron. According to Fig. 3, spiraling leads to decreasing of vertical focusing at radii 
smaller than 35 cm, and it is advisable to use a structure with a large spirality angle at radii greater than 35 cm. 
Thus, a structure with a large spiraling angle is effective only at radii larger that the hill gap value. 

Fig. 3. Ultimate spirality angle for C-80 cyclotron 
in dependence on the radius for 2gv = 386 mm, 
2gh = 170 mm, N = 4 

3. 3D computation and experiment

When choosing the spiral angle in the cyclotron design, it is necessary to take into account the fact that the 
magnetic field does not completely repeat the iron sector geometry [5]. 

According to Fig. 4, there exists an effect of magnetic spirality “netration” into the region of straight 
sectors [6]. This effect leads to a decrease in vertical focusing at radii smaller than 35 cm. This explains the 
widespread use of direct sectors in the central region. It is also seen that at radii ~ 75 ≤ r ≤ 88 cm there is 
a “lag” between the magnetic field spiraling angle and the geometrical one. The maximum lag reaches 7°, 
which at a spirality angle of 65° leads to a 30% decrease in focusing. 
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Fig. 4. The spirality angle γ (deg.) in dependence 
on the radius of the cyclotron: 1 – the data of the 
sector geometry spirality (black); 2 – the spirality 
of the fourth focusing harmonic of the magnetic 
field, obtained in 3D calculations and 
measurements of the magnetic field (red) 

After preliminary assessments related to the choice of the parameters of the magnetic structure, the final 
variants were calculated in detail using the 3D MERMAID program.  

In the calculations, to achieve the maximum accuracy, the magnetic structure was described using 
~ 20.5 million straight prisms [7]. During the design process, two variants of the magnetic structure were 
considered at a finite radius:  the flutter F = 0.04, the spirality angle γ = 55°, and F = 0.025 with γ = 65°, and 
the field variation amplitudes of 4.14 and 3.28 kG, respectively. Ultimately, the second option was adopted, 
providing a lower field in the hill, at which the loss of H– ions due to electrodissociation does not exceed 
2.6% [8].  

4. Conclusion

The analysis of the structure of the magnetic field of a cyclotron with a high spirality angle, presented in 
this work, makes it possible to investigate the effect of different parameters of the structure and promptly 
compare various options. Such an approach provides the means to qualitatively analyse the effect of a decrease 
in the vertical focusing of the spiral structure at the centre of the cyclotron. It is expedient to use the structure 
with a large spiraling angle only at radii larger than the gap in the hill. In the central region, it is advisable to 
use direct sectors. The paper presents a technique that was used in the design of the magnetic structure of the 
C-80 cyclotron. The use of the limiting large values of the spirality angle in the C-80 cyclotron made it possible 
to obtain the limiting energy as high as 80 MeV in a magnet with a diameter of 2 m at an extraction radius of 
0.9 m. The magnetic structure allows us to limit the negative ions electrodissociation to less than 2.6%.  
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