Парциальное разложение амплитуды реакции поляризованных частиц со спином 1. Вычисление наблюдаемых величин в эксперименте PolFusion.

Е.Н. Комаров, С.Г. Шерман

дейтроны: T~10÷100кэВ

пучок: P_x , P_y , P_z (±0.7)

 P_{xx} , P_{xy} , P_{xz}

 P_{yx} , P_{yy} , P_{yz} (-2/3÷+1/3)

P_{zx}, P_{zy}, P_{zz}

мишень: Q_x , Q_y , Q_z (±0.7)

 Q_{xx} , Q_{xy} , Q_{xz}

 Q_{yx} , Q_{yy} , Q_{yz} (-2/3÷+1/3)

 Q_{zx} , Q_{zy} , Q_{zz}

S=1;
$$\langle S^2 \rangle = S(S+1)=2$$
; $\langle S^2_x \rangle = \langle S^2_y \rangle = \langle S^2_z \rangle = 2/3$; $Q_{zz} = \langle S^2_z \rangle = 2/3$; $Q_{zz} = \langle S^2_z \rangle = 1$; $Q_{zz} = 1/3$;

 $P_z=0$; $S_z=0$; $<S_z>=0$; $Q_{zz}=-2/3$;

 $d + d \rightarrow n + He^{3}$ $d + d \rightarrow p + H^{3}$

Законы сохранения:

 J^P, T

Принципы:

унитарность;

инвариантность амплитуды (вращение системы координат, обращение времени); симметрия в.ф. (для системы dd тожд.бозонов).

Объем работы:

сделано разложение амплитуды реакции по парц. волнам;

приготовлены матрицы вращения $D^{1/2}(S=1/2)$ и $D^1(S=1)$;

вычислены диф. сечения для всех возможных состояний поляризации пучка и мишени (40+40);

0 (сохранение четности)

сделана и совершенствуется программа обработки экспериментальных данных (фаз.ан.) для извлечения парц.амплитуд.

Что еще нужно сделать:

учесть кулоновский вклад в амплитуду реакции (астрофизический фактор)

Парц.-волновой анализ:

$$0+0 \longrightarrow 0+0$$

Падающая плоская волна:

$$\varphi(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}$$

После рассеяния:
$$e^{ik \cdot r}$$

$$\psi(\vec{r}) = e^{i\vec{k}\cdot\vec{r}} + f(\theta)\frac{e^{ik\cdot r}}{r}; kr >> 1$$

$$f(\theta) = \frac{1}{2ik} \sum_{l} (2l+1)(S_l - 1) P_l(\cos \theta)$$
$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2; S_l = e^{2i\delta_l}$$

Разложение амплитуды по парциальным волнам:

$$B_{\sigma'\sigma}^{S'S} = \frac{1}{2i\sqrt{kk'}} \sum_{Jll'} i^{l-l'} \sqrt{4\pi(2l+1)} C_{l0S\sigma}^{J\sigma} C_{l',\sigma-\sigma',S'\sigma'}^{J\sigma} R_{l'l}^{JS'S} Y_{l',\sigma-\sigma'}(\theta,\phi)$$

 $R_{l'l}^{JS'S}$ - парциальные амплитуды

находятся методом МНК, используя набор экспериментальных данных

$$< He^{3}n|B|dd> = \frac{1}{\sqrt{2}}B(T=0)$$

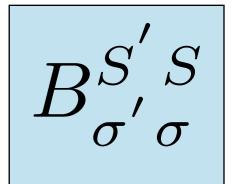
 $< H^{3}p|B|dd> = -\frac{1}{\sqrt{2}}B(T=0)$

$$1 + 1 \rightarrow 1/2 + 1/2$$

$$\langle m_1, m_2 | B | M_1, M_2 \rangle$$

$$m_{1,2} = +1/2, -1/2$$

$$M_{1,2} = +1, 0, -1$$


 $|M_1,M_2\rangle$ - начальное состояние (dd) - 9 состояний (3×3)

 $|m_1, m_2\rangle$ - конечное состояние (nHe³ или pT)- 4 состояния (2×2)

 $\langle m_1, m_2 | B | M_1, M_2
angle$ - 36 матричных элементов (9×4)

В представлении полного спина S и его проекции М

$$\langle S^{'}, M^{'}|B|S, M
angle$$
 - 36 матричных элементов $S=0,\,1,\,2$ $S^{'}=0,\,1$

Сохранение четности и инвариантность амплитуды по отношению к вращению системы координат:

$$S = 0 \rightarrow S' = 0$$
 B_{00}^{00} (1)
 $S = 1 \rightarrow S' = 0$ $B_{0-1}^{01} = B_{01}^{01}; B_{00}^{01} = 0$ (1)

$$S = 0 \rightarrow S' = 1$$
 $B_{-10}^{10} = B_{10}^{10}; B_{00}^{10} = 0$ (1)

$$S = 1 \rightarrow S' = 1 \qquad B_{-1-1}^{11} = B_{11}^{11}$$

$$B_{-11}^{11} = B_{1-1}^{11}$$

$$B_{0-1}^{11} = -B_{01}^{11}$$

$$B_{-10}^{11} = -B_{10}^{11}$$

$$B_{00}^{11}$$

$$(5)$$

Т-инвариантность: $B_{11}^{11} - B_{700}^{11} - B_{1-1}^{11} = \sqrt{2}ctg\theta(B_{01}^{11} + B_{10}^{11})$

$$S = 2 \rightarrow S' = 0$$

$$B_{0-1}^{02} = -B_{01}^{02}; B_{0-2}^{02} = B_{02}^{02}; B_{00}^{02}$$
(3)

$$S = 2 \rightarrow S' = 1$$

$$B_{-1-2}^{12} = B_{12}^{12} \qquad B_{-12}^{12} = B_{1-2}^{12}$$

$$B_{-1-1}^{12} = -B_{11}^{12} \qquad B_{0-2}^{12} = -B_{02}^{12}$$

$$B_{-10}^{12} = B_{10}^{12} \qquad B_{0-1}^{12} = B_{01}^{12}$$

$$B_{-11}^{12} = -B_{1-1}^{12} \qquad B_{00}^{12} = 0$$

$$(7)$$

Итак,

всего 1+1+1+5+3+7=18 амплитуд+1 связь (Т-инвар.) Остается 17 независимых амплитуд.

Для примера,

$$B_{12}^{12} = \frac{1}{2i\sqrt{kk'}} \sum_{l=2,4...} \left(-\frac{(l-1)(l+2)(2l+1)}{l(l+1)} \sqrt{\frac{3}{(2l-1)(2l+3)}} R_{ll}^{l12} + \frac{l+2}{l} \sqrt{\frac{(l-1)(2l+1)}{2(l+1)(2l-1)}} R_{l,l-2}^{l12} + \frac{l-1}{(l+1)} \sqrt{\frac{(l+2)(2l+1)}{2l(2l+3)}} R_{l,l+2}^{l12} + \frac{1}{(l+1)} \sqrt{\frac{(l+2)(2l+1)}{2l(2l+3)}} R_{l,l+2}^{l+2,12} - \frac{l-2}{l} \sqrt{\frac{(l-1)}{(l+1)}} R_{l,l}^{l-1,12} - \frac{l+3}{l+1} \sqrt{\frac{l+2}{l}} R_{ll}^{l+1,12} + \frac{1}{l} \sqrt{(l-2)(l-1)} R_{l,l-2}^{l-1,12} \right) P_{l1}$$

Отбор слагаемых в сумму $B_{\sigma'\sigma}^{S'S} = \sum_{m'} ...$

$$B_{\sigma'\sigma}^{S'S} = \sum_{Jll'} \dots$$

по принципу: J^P - сохраняется

Имеет место тождественность бозонов в начальном состоянии (спин дейтрона S=1)

$$\psi(d_1,d_2)=\psi(d_2,d_1)$$
 - симметрич. в.ф.

* изотопич. часть

* коорд. часть

* спиновая часть

изотопич. часть	коорд. часть	спиновая часть
C	C	C
С	a 10	a

$$(T=0)...(c)$$

коорд. часть:

$$(\vec{r} \rightarrow -\vec{r})...(-1)^l$$

спиновая часть:

$$S = 0...(c)$$

$$S = 1...(a)$$

$$S = 2...(c)$$

$$\left. \begin{array}{c} He^3 + n \\ H^3 + p \end{array} \right\} \longrightarrow$$

нет таких ограничений

 $^{2s+1}L_J$

Начальное состояние (dd)			Конечное состояние nHe ³ или pH ³			
S=0	S=1	S=2	S'=0	S'=0	S'=1	S'=1
$^{1}S_{0}$	$^{3}P_{0,1,2}$	$5S_2$	$^{1}S_{0}$	$^{1}P_{1}$	$^{3}S_{1}$	$^{3}P_{0,1,2}$
$^{1}D_{2}$	$^{3}F_{2,3,4}$	$^{5}\mathrm{D}_{0,1,2,3,4}$	$^{1}D_{2}$	$^{1}F_{3}$	$^{3}D_{1,2,3}$	$^{3}F_{2,3,4}$
$^{1}G_{4}$	$^{3}H_{4,5,6}$	$^{5}G_{2,3,4,5,6}$	$^{1}G_{4}$	${}^{1}{ m H}_{5}$	${}^{3}G_{3,4,5}$	$^{3}H_{4,5,6}$
$^{1}I_{6}$	³ J _{6,7,8}	⁵ I _{4,5,6,7,8}	$^{1}\mathrm{I}_{6}$	$^{1}J_{7}$	$^{3}I_{5,6,7}$	³ J _{6,7,8}
$^{1}K_{8}$	$^{3}L_{8,9,10}$	${}^{5}\mathrm{K}_{6,7,8,9,10}$	$^{1}K_{8}$	$^{1}L_{9}$	${}^{3}K_{7,8,9}$	$^{3}\mathrm{L}_{8,9,10}$
P=+1	P=-1	P=+1	P=+1	P=-1	P=+1	P=-1

L = 0, 1, 2, 3...S, P, 12 D, F...

$$S=0 \rightarrow S'=1$$
 $P=+1$ $J=4$ (1 переход) ${}^{1}G_{4} \rightarrow {}^{1}G_{4}$ $S=1 \rightarrow S'=0$ $P=-1$ $J=5$ (1 переход) ${}^{3}H_{5} \rightarrow {}^{3}H_{5}$ $S=2 \rightarrow S'=0$ $P=+1$ $J=4$ (3 перехода) ${}^{5}D_{4} \rightarrow {}^{1}G_{4} \mid \Delta 1 \mid =2$ ${}^{5}G_{4} \rightarrow {}^{1}G_{4} \mid \Delta 1 \mid =2$ ${}^{5}I_{4} \rightarrow {}^{1}G_{4} \mid \Delta 1 \mid =2$

Типы переходов $(lJ \rightarrow l'J)$

1. $S=0 \rightarrow S'=0$ P=+1 (1 переход) $J=1 \rightarrow J=1'=1$

2.
$$S=0 \rightarrow S'=1$$
 $P=+1$ (1 переход) $J=1 \rightarrow J=1'=1$

3.
$$S=1 \rightarrow S'=0$$
 P=-1 (1 переход) $J=1 \rightarrow J=1'=1$

4.
$$S=1 \rightarrow S'=1$$
 $P=-1$ (5 переходов) $l=J \rightarrow l'=J$ $l=J+1 \rightarrow l'=J+1$ $l=J-1 \rightarrow l'=J-1$ $l=J+1 \rightarrow l'=J-1$

$$l=J-1 \rightarrow l'=J+1$$

5.
$$S=2 \rightarrow S'=0$$
 $P=+1$ (3 перехода)

$$\begin{array}{ccc}
1=J-2 & \rightarrow & 1'=J \\
1=J & \rightarrow & 1'=J \\
1=J+2 & \rightarrow & 1'=J
\end{array}$$

6. $S=2 \rightarrow S'=1$ P=+1 (7переходов)

$$\begin{array}{cccc} l = J & \longrightarrow & l' = J \\ l = J-1 & \longrightarrow & l' = J-1 \\ l = J+1 & \longrightarrow & l' = J+1 \\ l = J-1 & \longrightarrow & l' = J+1 \\ l = J+1 & \longrightarrow & l' = J-1 \\ l = J-2 & \longrightarrow & l' = J \\ l = J+2 & \longrightarrow & l' = J \end{array}$$

Всего 18 переходов

Т-инвариантность:

$$R_{l'l}^{JS'S} = R_{ll'}^{JSS'}$$

Ограничения на парц. амплитуды $R_{l'l}^{J11}(S=S'=1)$:

$$R_{l'l}^{J11} = R_{ll'}^{J11}$$

$$\Delta l = |l' - l| = 2$$

$$R_{J+1,J-1}^{J11} = R_{J-1,J+1}^{J11}$$

Переходы

$$(l = J + 1, J) \rightleftharpoons (l = J - 1, J)$$

совпадают

Остается 17 независимых парц. амплитуд.

	$S \rightarrow S'$	
a	0->0	$a_{l'l}^J \equiv R_{l'l}^{J00}$
b	0→1	$b_{l'l}^J \equiv R_{l'l}^{J10}$
С	1→0	$c_{l'l}^J \equiv R_{l'l}^{J01}$
d	1→1	$d_{l'l}^J \equiv R_{l'l}^{J11}$
e	2→0	$e_{l'l}^J \equiv R_{l'l}^{J02}$
f	2→1	$f_{l'l}^J \equiv R_{l'l}^{J12}$

Для 1'≤4 и 1≤4 , например:

$$B_{11}^{11} = \frac{1}{2i\sqrt{kk'}} \left[(3d_{11}^1 + 3d_{11}^2 - \sqrt{6}d_{13}^2)P_1 + \right]$$

$$+(7d_{33}^3 + 5d_{33}^4 + 2d_{33}^2 - \sqrt{6}d_{31}^2)P_3$$