
11/3/2015 1

Time-of-Flight detectors for 
neutons. The NeuLand neutron 

Spectrometer of the R3B 
Collaboration.

Viacheslav Kuznetsov
Seminar HEPD, PNPI, November 3 2015



11/3/2015 2

R3B facility:
Kinematically
overdetermined
detection of reaction 
products.

NeuLand:
Detection of 
0.2 – 1 GeV neutrons

Requirements:
1) Excellent 

momentum and 
angular resolutions;

2) High  efficiency 
~90% 

3) Multiplicity of 
neutrons up to 6-10

10 – 30 m
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Two main types of neutron detectors

Arrays of long plastic-scitillator

counters

Arrays of crystal blocks

LEPS forward wall CLAS E-calorimeter

The Forward wall at 
GRAAL

(``The Russian Wall”)

BGO Ball: GRAAL  and 
BGO-OD experiments

TAPS and Crystall Ball: 
A2@MaMic Collaboration

Low costs, large acceptance -> 
located at long distance from a 

target -> appropriate  
energy/momentum resolution from 

measured time-of-flight

Multi-purpoce detectors, high 
price, low acceptance.  No 

energy information for neutrons
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Some basics for TOF detectors

PM1   A1,T1 PM2   A2,T2

The number of photoelectrons is defined by:
- deposited energy
- quality of scintillator material (light 
production, transparency);
- quality of polishing and wrapping;
- light collection by light guides and PMs 

- light decay constant σsc  for BC408 is 2.1 ns;
- light transportation uncertainty σLT  is ~1.8ns 
- transit time spread σPM (TTS) depends on phototubes and varies from 
0,3 to 3 ns

x
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Calibration Uncertainty

In reality

where  ΔCcal is the error of calibration

If a detector consists of many counters, Δccali varies 
from  counter to counter.

Russian Wall at 

GRAAL

σcal ~10- 20 ps

Ecal at CLAS@JLAV

σcal ~200- 500 ps



11/3/2015
6

Neutron detection:  Specific features

Neutrons interact inside detector volume mostly 

through knock out of recoil protons. 

ΔdDetection efficiency in 
scintillator bars is  ~1%/cm
-> Need for thick multilayer 

detector

Wide range of 
deposited energy ->
Need for low 
threshold to increase 

efficiency
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Specific requirements for neutron detectors

- Enough thickness to provide required  detection 
efficiency;
- High granularity;
- Extended range of pulse heights and low threshold;
- Less requirements to phototubes.
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NeuLand Detector
NeuLand will consist of 3000 individual submodules with a size of 5x5x250 cm3, arranged in
30 double planes with 100 submodules providing an active face size of 250x250 cm2 and a
total depth of 3 m. NeuLAND can be divided into two detectors for special applications and
will be placed at different distances from the target, in order to meet specific experimental
demands. A momentum resolution of Δp/p of 10-3 similar to that for is desired, resulting in
resolution requirements for the time of flight of σ(t) < 150 ps and a position resolution of
σ(x,y,z) ≈ 1.5 cm for given flight paths in the range from 10 to 35 m. Apart from the excellent
energy resolution of NeuLAND, the enhanced multi-neutron recognition capability with an
efficiency of up to ~50% for a reconstructed five-neutron event at 1 GeV will constitute a
major step forward.
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Simulated detection efficiency
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Scintillator counters 
Cost-effective solution for PMs:
Hammamatsu Photonics R8619

- Rise time - 2.5 ns
-Transition time spread  - 1.2 ns
- HV at anode sensitivuty 100 A/Lm -

~1000 V
- Expected operating HV 700 – 900 V  

Requirements for PMs from 
the HV system  HV <1500V.

Test measurements 

with 31-MeV electrons

BC408 scintillator bars

Light decay – 2.1 ns

Light output – 60% relative to antracene

Bulk light attenuation ~ 4 m
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Detector Construction

First part 
1500 counters
2018 - 2019

Second part 
1500 counters

~2022

Russian Contribution to the first part (in accordance with previous 
agreement) – 700 scintillator bars

Our suggestion: 700 scintillator counters (bars + PMs)

Current situation: deliverance of two prototype counters to GSI by 
the fall of 2015, discussion of a large contract in the first half of 
2016.
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Scintillator Bars at PNPI

two roughly-cut BC-408 bulks 
from Saint-Gobaine have been 
purchased,  machined and polished 
at the PNPI workshop

Two bars are ready and  now to be 
examined, wrapped and tested.
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MELZ Photomultipliers

MELZ offered newly-designed 

phototubes FEU-115 MKZ and 

FEU-85B with plane and spherical 

photocathodes

FEU -115 MKZ

HV at anode sensitivity 100 A/Lm

obtained in April - ~1500 V

obtained in October – ~1150 V

FEU-85b

HV at anode sensitivity 100 A/Lm

~900V
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Tests at PNPI

Several tests at the pion beam line and 
by using 90 SR source.

Encouraging but slightly contradictory 
results (not discussed)

Tests with UV laser at GSI
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Tests at GSI

Start

Stop1Stop2

Driver

MELZ HP R8619

Laser driver:
PicoQuant PDL 800-B

Laser head  LDH-P-C-375B
370 nm, 100ps pulse duration
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Comparison of MELZ (magenta) and HP R8619 
(green)pulse shapes

FEU-115MKZ  vs R8619 
FEU-85B vs R8619 

FEU-185B(magenta) vs R8619  at
HV=900V
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Timing resolution at different HV and light intensities

Excellent timing performance of FEU115MKZ PM!
PM under study fits the requirement HV<1500 V.

Next step: Test of four other FEU115MKZ PMs

HVs have been adjusted to get the same pulse height



11/3/2015 V.Kuznetsov, Jlab, November 18, 

2009

18

Conclusions and plans

- FEU 115MKZ look very promising for the remaining parts on 
NeuLand;
- More checks are needed to determine long-term stability and 
variation of parameters between different PMs;
- Scintilltor bars can be manufactured at PNPI, but the time 
schedule has to be understand;
- Potentially, PNPI reseachers (N.Kozlenko and myself) could 
contribute to the NeuLand calibration using the experience from 
the explotation of the Russian Wall at GRAAL. 
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Testing Facility at PNPI
- We have created a testing facility at the 

pion beam line  of the PNPI synchrothron;
- Comparative tests of timing performance 

of scintillator counters equipped with different 
photomultipliers;
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Measured PM times are defined by the following relations

t1=TOF+x/v+Const ;   t2=TOF+(L-x)/v+Const;

Where TOF is time-of-flight of pions from a certain point (target), x is a hit position along 

the counter axis, L is  the counter length, v is the efficient speed of light propagation 

inside the counter, Constants originate from cable and electronic delays.

TOF=(t1+t2)/2+Const; x/v=(t1-t2)/2+Const;

TOF resolution σTOF = σ((t1+t2)/2)=

sqrt(σ2
t1+σ2

t2)/2;                                                

Variation of (t1-t2)/2

σ((t1-t2)/2)≈ σTOF+Δx/v

where Δx is the size of the beam spot.

For a point-like beam (Δx~0)

σ((t1-t2)/2) ≈ σTOF

TOF resolution of a scintillator counter can be directly extracted from 

measured spectra of (t1-t2)/2

Δx~5 mm collimator
Counter in 
coincidence
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Thanks so much!
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Δx~5 mm collimator
Counter in 
coincidence


