ISOLDE: βDF

Многоканальное запаздывающее деление в области нейтронно-дефицитных изотопов свинца (ядра франция и астата)

ISOLDE, CERN

А. Е. Барзах, П. Л. Молканов, М. Д. Селиверстов, Д. В. Федоров

ISOLDE: Laser Ion Source

Beta-delayed fission

Beta-delayed fission

Low-energy fission

26 β DF isotopes, only 11 with A/Z distribution

Bimodal fission: ²⁵⁸Fm, ^{259,260}Md, ²⁵⁸No, ²⁶⁰Rf

E. K. Hulet et al., Phys. Rev. C 40, 770 (1989)

Bimodal fission: ²⁵⁸Fm, ^{259,260}Md, ²⁵⁸No, ²⁶⁰Rf

Mass distributions: (a) for events with TKE's<220 MeV and (b) for those with TKE's > 220 MeV

E. K. Hulet et al., Phys. Rev. C 40, 770 (1989)

Discovery of multimodal fission

^{225, 227}Pa:

I. Nishinaka, et al., Phys. Rev. C 56, 1997. 891

Multimodal fission: transition from asymmetric to symmetric fission

K.-H. Schmidt, J. Benlliure, and A. R. Junghans, Nucl. Phys. A 693, 169 (2001) K.-H. Schmidt, et al., Nucl. Phys. A 665, 221 (2000).

Symmetric fission in preactinide and Pb regions

K.-H. Schmidt, J. Benlliure, and A. R. Junghans, Nucl. Phys. A 693, 169 (2001)

K.-H. Schmidt, S. Steinhauser, C. Bockstiegel, A. Grewe, A. Heinz, A. R. Junghans, J. Benlliure, H. G. Clerc, M. de Jong, J. Muller, M. Pfutzner, and B. Voss, Nucl. Phys. A 665, 221 (2000).

Windmill system at ISOLDE

The full-range energy spectrum for ¹⁹⁶At

data set	S FFs	D FFs	$N_lpha/N_{eta { m df}}$	time
¹⁹⁴ At - HRS	8	3	$2.0^{+17}_{-8} \times 10^3$	1h 13m
$^{194}\mathrm{At}$ - GPS	385	106	$1.7(1) \times 10^{3}$	9h~11m
$^{196}\mathrm{At}$ - HRS	14	5	$3.9^{+19}_{-12} \times 10^5$	$5h\ 25m$
$^{196}\mathrm{At}$ - GPS	273	68	$4.3(5) \times 10^5$	35h~7m
200 Fr - HRS	1	0	$2.5^{+123}_{-17} \times 10^3$	21h~34m
200 Fr - GPS	7	2	$1.5^{+12}_{-6} \times 10^3$	$20h\ 18m$
202 Fr - HRS	115	43	$1.4(2) \times 10^4$	43h~59m

Energy in Si1 (MeV)

New type of asymmetric fission

competition between symmetric and asymmetric fission paths

Fragment mass distribution in βDF of Tl isotopes (theory)

1. Model: BSM(M) Brownian shape motion on fivedimensional (5D) potential energy surfaces in Metropolis random-walk approximation

Calculated yields for four Hg isotopes at three excitation energies. For the lighter isotopes the yields become more symmetric.

P. Möller, J. Randrup, A. Sierk, Phys. Rev. C **85**, 024306 (2012) M. Veselsky *et al.* Phys. Rev. C **86**, 024308 (2012)

Fragment mass distribution in βDF of Tl isotopes (theory)

2. HF calculations (SkM* and D1S forces) predict the similar PES for ¹⁸⁰Hg with $A_H/A_L=99/81$ at asymmetric scission point and very soft in Q_{30} direction PES for ¹⁹⁸Hg

Warda, M., A. Staszczak, and W. Nazarewicz, 2012, Phys. Rev. C86, 024601

3. "Scission point" model (assumption that statistical equilibrium is established at scission and the observable characteristics of the fission process are formed near the prescission configurations)

Andreev, A.V., G.G. Adamian, and N.V. Antonenko, 2012, Phys. Rev. C 86, 044315

3a. HF-based "scission point" model

Panebianco, S., J.-L. Sida, H. Goutte, J.-F. Lemaître, N. Dubray, and S. Hilaire, 2012, Phys. Rev. C 86, 064601

Fission barriers for Hg isotopes (comparison with theory)

$$P_{\beta \text{DF}} = \frac{N_{\beta \text{DF}}}{N_{\beta}} = \frac{\int_{0}^{Q_{\beta}} F(Q_{\beta} - E) S_{\beta}(E) \Gamma_{\text{f}}(E) / \Gamma_{\text{total}}(E) dE}{\int_{0}^{Q_{\beta}} F(Q_{\beta} - E) S_{\beta}(E) dE}$$
$$\Gamma_{\text{f}}(E^{*}) = \frac{1}{2\pi\rho_{\text{c}}(E^{*} - \Delta)} \int_{0}^{E^{*} - B_{\text{f}} - \Delta_{\text{sp}}} \rho_{\text{sp}}(E^{*} - B_{\text{f}}) - \Delta_{\text{sp}} - E') dE'$$

	<i>B_f</i> , exp (model), MeV	B _f , theor MeV
¹⁸⁰ Hg	7.5(1.5)	9.8
¹⁷⁸ Hg	~ 7	9.3

Fission barriers deduced from the βDF studies in the lead region confirm an earlier inference on the reduced fission barriers obtained from data on cross sections of heavy ion reactions

 $\begin{array}{l} \mathsf{P}_{\beta DF} \left({}^{180} \mathsf{TI} \right)_{\text{theor}} = 2 \times 10^{-6} \% \\ \mathsf{P}_{\beta DF} \left({}^{180} \mathsf{TI} \right)_{\text{exp}} = 3.2 (2) \times 10^{-3} \% \end{array}$

Beta-delayed fission: partial half-life

Systematics of β Df partial half-lives vs. Q_{β} -B_f points to some universal law

Low-energy fission: comparison with theory

 $P_{\beta DF}$ (¹⁹⁶At)=9(1) ×10⁻³ $P_{\beta DF}$ (¹⁹⁴At) and $P_{\beta DF}$ (²⁰²Fr) can't be determined due to the presence of isomers

ISOLDE: isomer-selective βDf

ISOLDE: isomer-selective βDf

Hyperfine structure study of ¹⁹⁴At^{g,m} to enable isomer-selective βDf measurements

TKE distribution in triple-humped cases (^{194,196}At, ²⁰²Fr) is markedly broader than in pure asymmetric case (¹⁸⁰Tl), whereas the mass split is the same

ISOLDE: correlation between TKE and fission mode

The green and blue curves represent data below and above the average TKE (red dashed lines in top figure): Higher energy events favor asymmetric mode, lower energy events – symmetric mode...

Correlation between TKE and fission mode: ²²⁷Ac

... it is coincide with the conclusion for ²²⁶Ra (p,f) reaction

E. Konecny and H. W. Schmitt, Phys. Rev. 172, 1213 (1968).

PES for ¹⁹⁶Po: different fission paths

Calculated PES for ¹⁹⁶Po from a microscopic HFB theory. Dashed lines represent fission paths.

Transition from asymmetric to symmetric fission

transition from asymmetric to symmetric fission through multimodal region

Transition from asymmetric to symmetric fission

Transition from asymmetric to symmetric fission

ISOLDE: βDF— conclusions and outlook

- Измерено массовое распределение осколков в запаздывающем делении ^{194,196}At и ²⁰²Fr. Установлено, что переход от асимметричного к симметричному делению в области нейтронно-дефицитных ядер в районе свинца осуществляется через область мультимодального деления. Массовые распределения и вероятности βDF (барьеры деления) не описываются в рамках современных теоретических подходов.
- 2. Планируется продолжение исследований: βDF для ¹⁸⁶⁻¹⁹⁰Bi, ¹⁷⁶Au; изомерно селективные измерения для ¹⁹⁴At и ²⁰²Fr; βDF в нейтронноизбыточной области (²²⁸⁻²³²Fr, ²²⁸⁻²³²Ac; r-process).

Mean position of the heavy asymmetric component in charge number (upper part) and neutron number (lower part)

Intensity ratios of the symmetric and the asymmetric fission components in the transitional region as a function of mass number

L. Audouin et al., Nuclear Physics and Gamma-Ray Sources..., World Scientific Publishing, Singapore 2014 pp. 217-225

Scheme of the SOFIA (Study On Fission with Aladin) detection set-up for fission fragments.

Elemental (left) and isotonic (right) yields for the fission of ²³⁸U.

Isotopic yields for the electromagnetic-induced fission of ²³⁸U

The transition of shape in the In-Sn-Sb distributions corresponds to the transition between the fission modes: "super-long" (SL; deformed fragments) for Z<50 and "standard" (SI; spherical heavy fragment) for Z>50

After an SL-mode fission, the deformation energy is converted in excitation and finally in additional neutron emission.