

Трековая система эксперимента R³B (GSI, Дармштадт)

А.Г. Крившич

Семинар О**⊉ВЭ ПИЯ**⊉ 20 октября, 2015, Technical Report for the Design, Construction and Commissioning of the Tracking Detectors for R3B

(TDR)

был рассмотрен и принят

экспертным комитетом FAIR

в августе 2015года.

R3B эксперимент и трековая система

R3B эксперимент в FAIR должен обеспечить измерение полной кинематики реакций с релятивистскими радиоактивными пучками с высокой эффективностью и отличным разрешением.

Трековая система должна позволить в максимальной степени использовать возможности работы с редкими изотопами начиная от гелия и до урана с энергией около 1AGeV, которые могут быть достигнуты в FAIR.

Базовые требования к трековой системе

1. Зарядовое разрешение для	
тяжелых фрагментов	- ΔZ/Z - 0.5% (σ);
2. Массовое и импульсное разрешение ДА	/Аи ΔР/Р - ≤ 10 ⁻³ (σ);
3. Высокоинтенсивная мода работы	up to 1 MHz;
4. Многотрековое разрешение.	
5. Эффективность детектирования для системы	в целом ≥ 85%.

Три основных моды работы экспериментальной установки R3B

Мода №1. High-resolution mode: «трекинг» тяжелых ионов (Z >50, A >100)

Мода №2. High-acceptance and multi-hit mode: «трекинг» много-частичных (фрагментов) распадов, включая измерение выхода испарительных протонов (~700МэВ).

Мода №3. High-rate experiments (≤1 MHz): менее экзотические пучки (используются только сцинтилляционные детекторы)

Start detector (LOS) Status

Главная задача. Временное разрешение. Оно должно быть существенно лучше любого другого детектора, применяемого в R3B.

Характеристики LOS-детектора

Сцинтилляционный детектор (LOS):

- маленький (5×5см2);
- тонкий 200 ÷ 500µm (для ядер средних масс);
- высокое временное разрешение σ ≤ 10рs.

Главные задачи.

1. Обеспечить адекватную идентификацию заряда с минимальным количеством материала;

2. Получить точную трековую (угловую) информацию для ионов до мишени и продуктов деления после мишени.

Предварительная концепция кремниевого 2D позиционно-чувствительного детектора 10x10cm2).

Характеристики Si-детекторов

Типы детекторов: позиционно чувствительный кремниевый детектор, работающий на принципе резистивного деления заряда, а также микро-стриповый детектор.

Первый детектор до мишени имеет толщину **300µm**, что позволяет хорошо идентифицировать и разрешать соседние заряды.

Второй детектор располагается ближе к мишени и имеет толщину 100µm, что минимизирует вклад вещества в угловой straggling.

Третий и четвертый детекторы располагаются после мишени. Это микростриповые детекторы. Они имеют наибольшие размеры (10×10 см2), чтобы закрыть угловой захват (±80mrad) магнита GLAD. Пространственное разрешение -700µm (pitch). Толщина – 100-200µm, что является компромиссом между минимальным угловым straggling и достаточными энергетическими потерями.

Технические параметры и размещение всех Si-детекторов выбирается таким образом, чтобы полученное угловое разрешение было бы существенно лучше of the material straggling (~0,3mrad).

Главные задачи.

1. Получить точную трековую (угловую) информацию для ядер пучка до мишени и после мишени.

2. Точное определение угла поворота продуктов деления после магнита.

Слева - прототип детектора: рама с оптическими волокнами + их подключение к Multi-Pixel-Photon Counters (MPPCs) и далее к Multi-Anode Photomultiplier Tubes (MAPTs).

Справа – структура оптических волокон в увеличенном масштабе.

The FEBEX digitise system создается на базе a flash-ADC и работает с максимальной загрузкой - до 50 MHz.

Технические параметры

1. Пластик имеет пик световой эмиссии с длиной волны 450 nm (голубая) и длину затухания (>4.0 m).

- 2. Сечение всех оптических волокон квадрат 200×200 µm2.
- 3. Ожидаемая эффективность детектора 90%.
- 4. FD1 (X,Y), FD2 (X,Y) и FD3 (X,Y) размещаются вокруг мишени и имеют активную площадь 10.24×10.24 cm2. Предполагается, что эти детекторы заменят Si-детекторы при работе на пучках предельной интенсивности.
- 5. FD4 (X) размещен после GLAD магнита в вакууме. Размеры 40.96 ст.
- 6. FD5 (X,Y) большой оптоволоконный детектор:
 - активная зона 120×80 cm2;
 - состоит из четырех слоев оптоволокна;
 - пространственное разрешение $\sigma x = 58.3 \mu m$ and $\sigma y = 462 \mu m$;
 - размещается непосредственно перед TOF-wall.

7. The angular straggling, вносимый материалом детектора, является доминирующим фактором при проведении угловых измерений после магнита.

Time-of-flight plastic scintillation wall (TOF) Status

Главные задачи.

1. Проведение время-пролетных измерений между "Start detector" и TOF, а также точное измерение зарядов тяжелых фрагментов.

Общий вид прототипа детектора

Технические параметры

1. Детектор размещается максимально далеко от мишени - 20метров. Активная зона детектора 120×80сm² (ширина и высота).

2. Размеры сцинтилляторов:

- 800х27х5 mm3 для легких пучков;

- 800х27х3 mm3 для тяжелых ионов.

3. ТОГ детектор должен работать с экстремально высокими временным (20ps) и энергетически (≤1%) разрешениями в пучках высокой интенсивности – до 1 МНz.

4. ТО F информация разделяется на два канала: **временной и энергетический**, которые обеспечивают:

- «временная» информация поступает в TDC. Эти сигналы совместно с аналогичными сигналами других детекторов используется для выработки триггера высшего уровня в системе регистрации данных. Используется только - Х.

- основной вклад в энергетические потери и, как следствие, в зарядовое разрешение ядер, вносят количество детектированных фотоэлектронов и energy-loss straggling. Используются (X и Y).

Proton Arm Spectrometer (PAS) Status

Главные задачи.

1. Измерение траекторий испарительных протонов.

Proton Arm Spectrometer - структура

(blue) and Y2 (red) внутри вакуумного объема позади GLAD магнита.

Общий вид STW (X1 - coordinate)

Параметры Straw Tube Wall (STW)

STW station	Outside dimensions [mm]	Length of straw [mm]	Straw tube material	Straw diameter, mm	Number of straws (max)
X1	2092×1112×92	1000	Kapton (wall thickness - 60mkm)	10	610
Y1	2611×1092×104	2700	Aluminum (wall thickness - 300mkm)	10	310
X2	2592×1112×104	1000	Aluminum (wall thickness - 300mkm)	10	760
Y2	2611×1092×104	2700	Aluminum (wall thickness - 300mkm)	10	310
				Totally	1990

Kapton tubes. Первая плоскость для измерения X1 координаты и которая имеет минимальное количество вещества (minimal straggling).

Aluminum tubes. Несмотря на то, что the angular straggling, вносимый этими трубками значительно больше, по сравнению с the thin Kapton tubes, их вклад в измеряемую угловую дисперсию пренебрежимо мал из-за того, что они размещаются в конце трека.

Proton Arm Spectrometer

	PAS parameters	Value
1	Geometrical acceptance	more than ±80 mrad (gap of the dipole magnet)
2	Detector active area	up to 1000×2700 mm
3	Granularity (tube diameter)	10 mm
4	Space resolution	≤ 200 µm
5	Angle resolution	≤ 0.2 mrad
6	Efficiency	≥ 95%
7	Total count rate for single tube	≥ 1x10 ⁵ s ⁻¹ .
8	Radiation drift length	less of 0.2%
9	Operation area	vacuum

реализована на практике новая технология создания детекторов частиц, которая базируется на straw-drift tubes с малым количеством вещества и большой длиной

В ОФВЭ должна быть создана и

Описание Straw Tube

Принципиальный момент

Для первой станции (X1) мы планируем использовать straw-tube technology (каптон), когда straw работают под давлением до 2Атм (абсолютное).

Подобная технология была развита в Юлихе (группа Peter Wintz) для нескольких экспериментов (COSY, PANDA).

Опыт работы с подобной технологией имеет Дубна

Кто именно будет производить для нас трубки (LAMINA или Dubna) пока открыт.

Straw tube - механические свойства

Удлинение трубки длиной 1,55метра как функция от избыточного давления: (1) без реинфосирования трубки углеволокном и (2) с реинфосированием.

Временная нестабильность длины трубки в зависимости от величины избыточного давления (1) 4Атм и (2) 1Атм.

Радиус трубки как функция избыточного давления (1) без реинфосирования трубки углеволокном и (2) с реинфосированием.

Существенные изменения в наружных размерах каптоновых straw-tubes (наружный диаметр, длина) в зависимости от величины избыточного давления должны приниматься во внимание.

Радиационная длина. Вещество детектора.

Element	Particle type	dE/dX ₀ [MeV/mm]	X ₀ [mm]	X/X ₀
Straw tube material	Proton	0.315	8.19×10 ²	1.46×10 ⁻⁴
	α - particles	2.560	101	1.19×10 ⁻³
	Li ions	8.594	30.1	3.99×10 ⁻³
	B ions	33.284	7.76	1.55×10 ⁻²
Anode wire	Proton	2.565	101	1.79×10^{-4}
Gas mixture Ar- CO_2 - CF_4 (at 1 Bar)	Proton	4.613×10 ⁻³	5.6×10 ⁴	2.48×10 ⁻⁴

Total X/X ₀ of one straw [%] P_{rec}		0.057 [%]
Total X/X ₀ of STW(X1) [%]	Proton	0.172 [%]

Средняя величина радиационной длины для различных материалов, из которых состоит как одна straw, так и STW в случае протонов, альфа-частиц, Li и B ионов с энергией 700 МэВ.

Материал STW вносит не более, чем 0.2% от полной радиационной длины.

Расчеты были выполнены с помощью SRIM@2011 программы.

Влияние остаточного магнитного поля на работу PAS

Длина дрейфа электрона от трека частицы к анодной проволочке в скрещенных электрическом и магнитных полях увеличивается по-сравнению со случаем отсутствия магнитного поля. Это приводит к тому, что X-T зависимость изменяется, вызывая ошибку в определении абсолютной координаты частицы.

Средний угол между вектором скорости электрона и и вектором электрического поля не практически не превышает **0.35**°. В результате, ошибка в определении координаты частицы **не превышает нескольких микрон.**

Вывод: влиянием магнитного поля на рабочие параметры straw можно пренебречь.

Garfield simulation: величины дрейфовой скорости, коэффициенты диффузии, X-T зависимость

для различных газовых смесей.

Garfield simulation:

Влияние давления на

величины дрейфовой скорости, коэффициенты диффузии

и КГУ для различных газовых смесей.

Наиболее перспективная газовая смесь Ar+30%C2H6.

«Проба пера» - тонкостенные straws

Первые поставки тонкостенных straws

Есть достаточно хорошая надежда, что технология производства ультра-тонкостенных труб отлажена.

Окончательное заключение будет дано после проведения входного контроля второй партии труб.

Планы на 2016год

(предложения)

Прототип №1

- 1. Длина straw **1100мм.**
- Материал катода алюминий (стенка - 0,25мм)
 Число каналов 48×2=96.

Прототип №2

 Длина straw – 2700мм.
 Материал катода – алюминий (стенка - 0,25мм)
 Число каналов 48.

Прототип №3

- 1. Длина straw 1100мм.
- 2. Материал катода каптон (майлар)
- 3. Число каналов 48×2=96.

Readout (OP3 O&B3) High voltage Low voltage Gas system Cabling

Я хотел бы поблагодарить всех своих коллег, которые приняли самое активное участие в сложной подготовительной работе, которая позволила сейчас сказать

- мы сможем успешно реализовать данный проект:

В.А.Андреев, Г.Д.Алхазов, Г.Е.Гаврилов, В.Л.Головцов, Е.А.Иванов, Д.С.Ильин, Д.А.Майсузенко, Ю.К.Огурцов, И.Н.Парченко, Л.Н.Уваров, Л.Ш.Рабинский, Н.Н.Филимонова, А.А.Фетисов, Г.Д.Шабанов, Н.Ю.Швецова.

19 M H

The thickness of the detectors is chosen as the optimal solution between:

- position resolution,
- energy loss measurement,
- energy straggling and angular straggling,
- detector rise time, which defines the rate performance.

These detectors must introduce a minimum background reaction rate and should withstand radiation damage.

