Проект ПИТРАП-ионной ловушки на реакторе ПИК

Ю.Н. Новиков

Семинар ОФВЭ ПИЯФ

23 апреля 2015 г.

Тематика доклада

- 1. Физические задачи проекта ПИТРАП (Яд.Ф. и Астро-Ф.)
- 2. Место ПИТРАП в ансамбле других международных проектов. Возможности коллаборации с ними.
- 3. Технические принципы создания комплекса установок проекта ПИТРАП. Материально-техническая база.
- 4. Что выполнено к настоящему времени (НИР, предпосылки НИОКР, публикации)? Ближайшие задачи.

С Действующие и планируемые on-line установки с ионными ловушками Пеннинга

ЛФЭ

Установка TRIGA-TRAP как прообраз ПИТРАП

В настоящее время единственной установкой с ионной ловушкой на реакторе является TRIGA-TRAP в Майнце (Германия) [1]. Однако малая мощность реактора, на несколько порядков величины уступающей ПИК, существенно ограничивает возможности системы.

Уникальные возможности ПИЯФ

- Высокопоточный реактор ПИК,
- Возможность установки высокочувствительной и высокопрецизионной установки для измерения масс нуклидов и их времён жизни,
- Наличие единственной в России группы ЛФЭЯ, специализирующейся в работе с ионными ловушками (в коллаборациях с немецкими группами в Дармштадте, Майнце, Хайдельберге, финской группой в Ювяскюля, группой в ЦЕРНе),

Прекрасные условия для синергии

Основные направления с использованием ионной ловушки ПИТРАП в фундаментальной физике

Прямые высокоточные измерения масс (и времён жизни) нуклидов в целях:

On-line

- <u>Ядерная физика</u> (ландшафт массовой поверхности экзотических нуклидов, ядерная изомерия, формулы масс, пост-ловушечная спектроскопия),
- <u>Астрофизика</u> свойства r-процесса; определение пути r-процесса.

Off-line

- Астрофизика свойства s-процесса (космохронология)
- Нейтринная физика (закон сохранения лептонного заряда, существование тяжёлых «стерильных» нейтрино),
 Ю. Новиков – Семинар ОФВЭ 23.04.15

«Астрофизическая» карта нуклидов

Распространённость элементов в природе

Обогащение солнечной системы химическими элементами

процессов

 λ (n γ) =< σ v>n_n $\lambda(\beta) \approx Q_{\beta}^{5} / 10^{4} \text{ s}^{-1}$

Статистическое равновесие в г-процессе

Abundance maxima:

$$\frac{dY}{dA} = 0$$

 $\overline{S_n} = kT \ln \left[\frac{2}{n_n} \left(\frac{m_u kT}{2\pi\hbar^2} \right)^{3/2} \right]$ Independent of neutron capture cross-section!!!

T=1. 5 GK, $n_n = 10^{24}$ / cm³, $S_n \sim 3$ MeV Courtesy of J. Clark(UM)

$$S_n = M(Z, N-1) - M(Z, N) + m_n$$

Взрыв и охлаждение r-процесса

(картинка В.П. Чечева)

t_o-начало взрывного *r*-процесса

t_c- начало «охлаждения»

Развитие теории г-процесса

- Классическая «статическая» теория -М.иДж. Бербиджи, У. Фаулер, Ф. Хойл. (1957)
- Теория с разным набором параметров для пиков распространённости г-нуклидов с А ≈ 80, А ≈ 130, А≈165 и А ≈195
- Теория «перецикловки» с r-процессом на осколках деления
- «Динамическая теория» с переменными величинами n_n и T₉
- "Двойной, r-процесс

Распространённость элементов в природе

«Чем дальше эксперимент от теории, тем он ближе к Нобелевской премии» Ф. Жолио -Кюри

Какие свойства нуклидов представляют интерес для процесса быстрого захвата нейтронов (r-процесса)?

- Ландшафт массовой поверхности экзотических нуклидов –абсолютные значения масс основных и долгоживущих изомерных состояний, → путь процесса
- Времена жизни основных и долгоживущих изомерных состояний, → развитие процесса во времени
- Ветвление распада на запаздывающие процессы (нейтронные, деление) → корректный расчёт распространённости элементов в природе

Сравнительная продуктивность различных установок

R E O A

Оценка скорости генерации нуклидов в мишени ²³⁵U при облучении тепловыми нейтронами с потоком $I_n=3\times10^{13}$ н/см²/с. Для нейтроноизбыточных нуклидов с зарядом Z и неизвестными или неточными значениями масс показаны периоды полураспада $T_{1/2}$, выход нуклидов на одно деление и скорости генерации нуклидов в вариантах тонкой "холодной" мишени и массивной "горячей" мишени.

Нуклид	Z	Т _{1/2} , мс [10]	Выход нуклидов на одно деление [11]	Скорость генерации, с ⁻¹ ("холодная" мишень)	Скорость генерации, с ⁻¹ ("горячая" мишень)	
	28	680(120)	5,0E-08	5,4E+06	7,5E+06	
⁷⁸ Cu	29	335(11)	8,3E-08	9,0E+06	1,2E+07	
⁸⁰ Zn	30	550(11)	3,6E-06	3,9E+08	5,4E+08	
⁸⁴ Ga	31	85(10)	1,7E-07	1,8E+07	2,6E+07	
⁸⁵ Ge	32	540(50)	2,4E-05	2,6E+09	3,6E+09	
	33	610(120)	1,1E-04	1,2E+10	1,7E+10	
⁹¹ Se	34	270(50)	6,9E-06	7,5E+08	1,0E+09	
⁹³ Br	35	102(10)	1,9E-05	2,1E+09	2,9E+09	
⁹⁵ Kr	36	114(3)	1,0E-04	1,1E+10	1,5E+10	
¹⁰⁰ Rb	37	48(3)	3,9E-08	4,2E+06	5,9E+06	
¹⁰² Sr	38	69(6)	4,8E-07	5,2E+07	7,2E+07	
	39	298(9)	1,1E-04	1,2E+10	1,7E+10	
¹³⁰ Cd	48	162(7)	7,3E-06	7,9E+08	1,1E+09	
¹³³ In	49	165(3)	3,1E-06	3,3E+08	4,7E+08	
¹³⁴ Sn	50	1050(11)	1,3E-04	1,4E+10	2,0E+10	
¹³⁶ Sb	51	923(14)	2,1E-03	2,3E+11	3,2E+11	
¹³⁸ Te	52	1400(400)	9,4E-04	1,0E+11	1,4E+11	
	53	430(20)	2,1E-04	2,3E+10	3,2E+10	
¹⁴⁵ Xe	54	188(4)	3,7E-06	4,0E+08	5,6E+08	
	55	146(6)	1,6E-07	1,7E+07	2,4E+07	
¹⁵⁰ Ba	56	300	5,9E-07	6,4E+07	8,9E+07	
	57	510(30)	1,1E-04	1,2E+10	1,7E+10	

тишень для газ. носителя	
фольга ²³⁵ U	

вес 1.5 г

площадь 150 см²

2.5 ·10¹⁹ ат/см²

Поток нейтронов 3 $10^{13}\ /cm^{\,2}\,c$

Выделяемая мощность 1.5 кВт

У Карта нуклидов с ожидаемым путём г-процесса и границей достижимых нуклидов на ПИТРАПе

Зал горизонтальных каналов ПИК

Приёмная часть и ионизационный узел в варианте газового носителя продуктов

Т Макет основной трассы ПИТРАП с ионной ловушкой

Макет установки ПИТРАП, состоящей из следующих основных элементов: поворотного магнита (1), газонаполненного радиочастотного квадруполя (2), времяпролётного масс-анализатора (3), сверхпроводящего магнита с ловушками Пеннинга (4).

Выходы нуклидов на ловушке

Время-пролётный масс-спектрометр

Схема системы из двух ловушек Пеннинга (подготовительной и измерительной)

ЛФЭЯ

<u>Движение ионов в ловушке</u>

Удержание ионов внутри ловушки Пеннинга осуществляется сильным магнитным полем и слабым электрическим.

Подготовительная ловушка Пеннинга: охлаждение в буферном газе

- ◊ Давление буферного газа (гелий) ≈10-6 мбар
- \diamond Время охлаждения ≈ 100 мс
- \diamond Разрешающая способность ${\approx}10^5$
- ◊ Число ионов в ловушке <100
- ◊ Зарядовые состояния ионов: 1+, 2+

Продольный разрез схемы ионно-оптического тракта за измерительной ловушкой

ЛФЭ

Измерительная ловушка Пеннинга: времяпролётный ИЦР

ФЭ

Измерительная ловушка Пеннинга: фазовый метод

 Требуется стабилизация магнитного и электрического полей.

П На пути к реализации проекта ПИТРАП

- Выполнена НИР проекта,
- Сдано Техническое Задание,
- Ведётся подготовка НИОКР,
- Выпущен препринт, посвящённый подробному описанию проекта,
- Отправлена (и принята к публикации в ж. «Атомная Энергия») статья о проекте,
- Доклады о ПИТРАП представлены на КМУС-14 в ПИЯФ и ISINN-23 в ОИЯИ(Дубна),
- Составлено и частично подписано «Письмо о намерениях» между ПИЯФ, МПИ(Гейдельберг) и ГСИ/ФАИР,
- Действует Меморандум о содружестве между МПИ и ПИЯФ, а также Соглашение с Унив.Ювяскюля.

- Проработка и расчеты (термические, механические, дозной активности) для источника и канала,
- Проработка конструкции био-защиты
- Оценка условий и принципов действия при аварийной ситуации,
- Поиск производителя сверхпроводящих магнитов в России !!!

Непосредственные участники проекта (на 1 мая 2015 г)

- ЛФЭЯ- Ю.И. Гусев, В.С. Гусельников, С.А. Елисеев, Т.В. Конева, Д.А. Нестеренко, Ю.Н. Новиков, А.В. Попов, М.В. Смирнов, П.Е. Филянин, С.В. Ченмарёв
- Группа из ЛКиСТ
- Группы из МПИ (Хайдельберг), ГСИ/ФАИР (Дармштадт) и Университета Майнца (потенциальные участники)
- В дальнейшем сотрудники ПИК

Смета на материалы и оборудование

(в ценах 2012 г.)

Элемент установки	Цена (тыс. Евро)	Место разработки/
		производства
сверхпроводящий	700	фирма Magnex
магнит, 7 Тесла		Великобритания
газонаполненный	200	GSI и MPIK,
квадруполь с		Германия
электроникой		
время-пролётный	250	Greifswald,
спектрометр		Германия
детекторные станции:	100	VACOM, PREVAC
механический привод		МРІК, Германия
сборка держателя		El-Mul, Израиль
МКП-детектор		ORTEC
Si-детектор		ORTEC
электроника		
ионные источники:	200	ПИЯФ, Россия
механика		ПИЯФ, Россия
вакуумная камера		HeatWave, CШA
матрицы щелзем. элем.		несколько фирм
лазер и оптика		

Смета на материалы и оборудование (продолжение)

Криостат, электроника	350	несколько фирм,
для третьего этапа (FT-		Германия
ICR)		_
распределительный	15	ПИЯФ, Россия
квадруполь:		ПИЯФ, Россия
электроды		
вакуумная камера		
ионная оптика:	100	ПИЯФ, Россия
электроды		ПИЯФ, Россия
вакуумные камеры		CAEN, Италия
электроника и электрика		
вакуумные камеры	100	несколько фирм,
(сталь 1.4429 ESU)		Германия
сборка электродов	100	MPIK,
ловушек		Германия
электроника и	150	GSI, MPIK/
электрика для ловушек		Германия
		AGILENT,
		Stanford Research/
		США
вакуумная техника:	150	OERLEKON
турбонасосы		OERLEKON
форвакуумные насосы		PFEIFFER
измерители давления		PFEIFFER, Swagelok
система подачи газа		
высоковольтная	50	ПИЯФ, Россия
платформа		ITEM
сборочная платформа	50	ПИЯФ, Россия
		ITEM
система стабилизации:	50	ПИЯФ, Россия
температуры магнита		MKS, CША
давления в магните		
Газонаполненная камера	200	GSI,MPIK/
		Герменияб
		ФРИП

Статьи расходов (в ценах 2012 г.)

№ № ПП	Наименование статьи расходов	Сумма (тыс.руб.)
1.	Материалы, комплектующие изделия и оборудование, изготовленное за рубежом	110600
2.	Расходы на оплату труда	50000
3.	Обязательные отчисления от оплаты труда	17000
4.	Командировки	5000
5.	Услуги сторонних организаций	2000
6.	Растаможивание/Транспортные расходы (30% от стоимости продукта)	7400
7.	Накладные расходы (30% от п.2)	15000
	Всего расходов	207000

Схема масс-сепаратора на ПИК в проекте СОЛЯРИС (1991 г.)

Рис.2. Общая схема расположения комплекса СОЛЯРИС. Обозначения: I - мишенная камера, 2 - поворотный конденсатор, 3 - электромагнит, 4 - ионопровод, 5 - защита, 4, 7, 8, 9, 10 - различные ГЭК реактора ПИК.

Продуктивная способность зарубежных установок для измерения масс

