

Передача спина лямбда гиперону в эксперименте HERMES

D. VERETENNIKOV

Содержание доклада

- Введение. Спиновый кризис
- Мировые данные по передаче спина Л гиперону
 - от продольно-поляризованного лептонного пучка
- Описание эксперимента HERMES
- Восстановление Л событий
- Метод вычисления вектора передачи спина для

продольно-поляризованного пучка

- Результаты
- Выводы

Спиновый кризис

Constituent quark model (Naïve CQM)

 $\Delta \Sigma = \Delta \Sigma_q = 1$, спин определяется только кварками,

эксперимент- магнитные моменты барионов хорошо воспроизводятся CQM

EMC (1988) эксперимент, глубоко неупругое рассеяние ГНР (DIS) поляризованных мюонов на поляризованной мишени (DIS «не видит глюонов»)

 $\Delta \Sigma_q = 0.12 \pm 0.09 \pm 0.14 \neq 1 !!!$

Современные данные: HERMES и COMPASS эксперименты в очень хорошем согласии дают $\Delta \Sigma_{a} = 0.330 \pm 0.025_{exp} \pm 0.011_{theo} \pm 0.028_{evol}$ (HERMES)

Λ гиперон

Naïve CQM модель

 $\Delta \Sigma = 1$ $\Delta u = \Delta d = 0, \Delta s = 1$

Lattice-QCD расчет

 $\Delta\Sigma = 0.64 \quad \Delta u = \Delta d = -0.02, \ \Delta s = 0.68 \ (\pm 0.04)$

Используя экспериментальные данные для протона и **SU(3)**

ΔΣ=0.33	Δu	Δd	Δs
p(uud)	0.84	-0.43	-0.09
n(udd)	-0.43	0.84	-0.09
Λ ⁰ (uds)	-0.16	-0.16	0.64
Σ ⁺ (uus)	0.84	-0.09	-0.43
Σ ⁰ (uds)	0.375	0.375	-0.43
Σ ⁻ (dds)	-0.09	0.84	-0.43
Ξ ⁰ (uss)	-0.43	-0.09	0.84
E⁻(dss)	-0.09	-0.43	0.84

Поляризованный распад Л гиперона

- Распад Λ⁰ "само-анализирующийся", так как происходит с нарушением четности: Λ⁰ → p + π⁻, приводящим к асимметрии вылета продуктов распада по и против спина Λ
- Угловое распределение протонов от распада Λ^0 (в ее системе покоя):

$$\frac{dN}{d\Omega_p} = \frac{1}{4\pi} \left(1 + \alpha \, \vec{P}_A \, \vec{k}_p \right)$$

$$\alpha = 0.642 \text{ for } \Lambda$$

$$\alpha = -0.642 \text{ for } \bar{\Lambda}$$

- \vec{k}_p единичный вектор в направлении импульса протона в системе покоя Λ и \vec{P}_Λ ее поляризация.
- Измеряя асимметрию в угловом распределении протонов (пионов) можно извлечь поляризацию Л гиперона

Коэффициент продольной передачи поляризации в ГНР

$$\vec{e} + N \rightarrow e' + \vec{\Lambda} + X$$

Кинематические переменные ГНР

 $Q^{2} = (k_{e} - k_{e'})^{2}, \quad v = E_{e} - E'_{e}$ $x = \frac{Q^{2}}{2M\nu}, \quad y = \frac{\nu}{E_{e}}, \quad z = \frac{E^{\Lambda}}{\nu}$

$$\boldsymbol{P}_{i}^{\Lambda} = \boldsymbol{P}_{B}\boldsymbol{D}_{i}(\boldsymbol{y})\boldsymbol{D}_{Li} \quad i = (x, y, z)$$

 D_{Li} - коэффициент передачи поляризации от фотона к Λ гиперону, $D_i(y)$ - деполяризационный фактор

 D_{Li} определен в системе покоя Λ , где поляризация \vec{P}_{Λ} 3-х мерный вектор, где временная компонента отсутствует, т.е. **D**_{Li} тоже 3-х мерный вектор

Механизмы образования Λ гиперона

Токовая фрагментация, Λ содержит выбитый кварк $\boldsymbol{\chi}_F > \boldsymbol{0}$

Фрагментация мишени, Λ *содержит* остаточный дикварк мишени $\boldsymbol{\chi}_F < \boldsymbol{0}$ В с.ц.м. системе фотон-протон

- $x_F > 0$, $ec{p}_A$ направлен в ту же сторону куда и $ec{p}_{\gamma^*}$
- $x_F > 0$, $ec{p}_A$ направлен в противоположную сторону от $ec{p}_{\gamma^*}$

Системы координат рождения Л гиперона в ГНР

- Вектор *D_{Li}* определен в системе покоя Λ (спΛ)
- Импульсы виртуального фотона и протона от распада Л транслируются в эту систему
- Импульс А в спА равен 0, но его (след) направление сохраняется
- Λ Production plane плоскость рождения задана векторами импульсов фотона и Λ
- Система координат:
 - Z вдоль импульса Л
 - Z-> Z', вдоль импульса фотона

 D_{LY} = 0 <- сохранение четности

При этом поперечная поляризация (не связанная с поляризации пучка) не запрещается

Коэффициент передачи поляризации

Компоненты поляризации Λ гиперона могут быть расписаны как:

$$P_X^{\Lambda} = -P_B D_X(y) \left\{ \frac{M}{Q} \frac{\sum_q e_q^2 x f_1^q(x) H_1^q(z)}{\sum_q e_q^2 x f_1^q(x) D_1^q(z)} + \frac{M^{\Lambda}}{Q} \frac{\sum_q e_q^2 x f_1^q(x) \tilde{G}_1^q(z)/z}{\sum_q e_q^2 x f_1^q(x) D_1^q(z)} \right\} = -P_B D_X(y) D_{LX}(x,z)$$

P.J.Mulders and R.D.Tangerman, Nucl.Phys. B461 1996

 P_Y^A (поперечная поляризация) не зависит от поляризации пучка $P_B o$ имеем только 2 компоненты $D_{LX}(x,z)$ и $D_{LZ}(x,z)$

Коэффициент передачи поляризации

Мировые данные

• E665, $\mu N \rightarrow \mu' \Lambda X$

E665 Collaboration, M. R. Adams et al., Eur. Phys. J. C17 (2000)

• NOMAD, $\nu_{\mu}N \rightarrow \mu\Lambda X$ NOMAD Collaboration, P. Astier et al.,

Nucl.Phys. B605(2001)

• COMPASS, $\mu N \rightarrow \mu' \Lambda X$ COMPASS Collaboration, M. Alekseev et al., Eur.Phys.J. C64 (2009

• HERMES, $eN \rightarrow e'\Lambda X$

HERMES Collaboration, A. Airapetian et al., Phys. Rev.D74 (2006) без $\overline{\Lambda}$, неполная статистика (до 2000 года) N_{Λ}=7300 Ось квантования (направление вектора DLL) задавалась

Спектрометр HERMES

- 27.6 GeV продольнополяризованный лептонный (e+/e-) пучок
- Пучок поляризовался
 благодаря эффекту Соколова-Тернова
- Поляризация 20% < P_B < 70%
- Направление поляризации менялось примерно раз в месяц
- Хорошая идентификация частиц по RICH детектору и калориметру

Эффективность пропорциональных камер

Типичная энергия электронов в лавине E > 10 eV, а типичная энергия химической связи 3-4 eV

Недостаточная чистота газовой смеси → «наросты» на аноде → уменьшение газового усиления

Окисление катода в результате длительной работы приводит к усилению темнового тока, и, как результат, невозможность поднять HV для компенсации падения эффективности

HV scan, MC-top planes, thr = 45 3.0 0.6 0.4 0.4 0.2 2800 3000 2800 3000 2800 3000 hv hv hv eff 0.8 0.8 - 02.11.03 0.6 0.6 0.6 **V** - 11.06.04 0.4 0.4 mc2 x 2800 3000 3000 3000 2800 2800 hv hv hv eff 0.9 0.8 0.8 0.7 0.7 mc3 u mc3 > 2800 3000 2800 3000 2800 3000 hv hv hv

снижение эффективности на 15%

Эффективность пропорциональных камер

Короткие треки

- Пион может быть как длинно-трековым, так и коротко-трековым
- Короткие треки дают примерно 50% статистики для Λ гиперона

Отбор событий с Л гипероном

Вычисление коэфф. передачи поляризации Л гиперона

В случае 4π детектора

$$\frac{dN}{d\Omega_p} = \frac{1}{4\pi} \left(1 + \alpha P_{L'}^{\Lambda} \cos\theta_{pL'} \right) \qquad P_{L'}^{\Lambda} = \frac{\langle \cos\theta_{pL'} \rangle}{\alpha \langle \cos^2\theta_{pL'} \rangle}$$

В случае ограниченного аксептанса детектора

Моделирование аксептанса детектора с помощью Монте-Карло (сложно оценить систематическую ошибку),

ИЛИ много лучше (!!)

исключить функцию аксептанса, используя тот факт, что она постоянна во времени, а направление поляризации пучка меняется

Вычисление передачи поляризации Л гиперона

Рассмотрим простой одномерный случай условие $\llbracket P_B
rbracket = rac{1}{L} \int P_B \, dL = 0$

Вероятность і-го события, $\varepsilon(\theta)$ - функция аксептанса, независящая от времени

$$\omega_{i} = \varepsilon(\theta_{i}) \frac{1 + \alpha P_{B,i} D_{LZ} \cos(\theta_{i})}{\int \varepsilon(\theta) (1 + \alpha P_{B}(t) D_{LZ} \cos(\theta)) d\Omega \cdot dt} = \varepsilon(\theta_{i}) \frac{1 + \alpha P_{B,i} D_{LZ} \cos(\theta_{i})}{\int \varepsilon(\theta) d\Omega \cdot dt} = C \cdot \varepsilon(\theta_{i}) (1 + \alpha P_{B,i} D_{LZ} \cos(\theta_{i}))$$

$$W = \prod_{i} \omega_{i} \implies L = -\ln W = -\ln \prod_{i} \omega_{i} = -\sum_{i} \ln \omega_{i} = C_{1} - \sum_{i} \ln \left[\frac{\varepsilon(\theta_{i})}{1 + \alpha P_{B,i}} D_{LZ} \cos(\theta_{i}) \right]$$

$$\frac{\partial L}{\partial D_{LZ}} = -\sum_{i} \frac{\varepsilon(\theta_{i})(\alpha P_{B,i}\cos(\theta_{i}))}{\varepsilon(\theta_{i})(1 + \alpha P_{B,i}D_{LZ}\cos(\theta_{i}))} = 0 \qquad \Longrightarrow \qquad \sum_{i} P_{B,i}\cos(\theta_{i})(1 - \alpha P_{B,i}D_{LZ}\cos(\theta_{i})) = 0$$

$$D_{LZ} = \frac{\langle P_B \cos \theta_{pZ} \rangle}{\alpha [\![P_B^2]\!] \langle \cos^2 \theta_{pZ} \rangle}$$

Функция аксептанса сокращается при условии того, что она стабильна во времени и смены направления поляризации пучка

Для дополнительного контроля метода также вычислялся компонент $D_{LY} \equiv 0$ (обсуждалось выше), полученный результат $D_{LY} = 0.013 \pm 0.029$ подтвердил правильность метода

Передача спина к Λ гиперону

Передача спина к $\overline{\Lambda}$

Оценка систематической ошибки

Для оценки систематической ошибки использовались:

- Пары противоположно заряженных адронов летящих из мишени (h⁺h⁻⁻pairs), т.к для них отсутствует асимметрия углового распределения «вперед-назад», которая коррелировала бы с поляризацией пучка
- Короткоживущие каоны (Ks), т.к. спин Ks = 0, то коэффициент передачи тоже должен быть равен нулю

Хороший способ контроля ложной асимметрии: нестабильность функции аксептанса детектора даст ненулевое значение коэффициента передачи поляризации

Оценка систематической ошибки

Сравнение с мировыми данными

- HERMES: результат готов к публикации в Phys.Rev.D
- В области токовой фрагментации существенны данные экспериментов HERMES и COMPASS
- Данные HERMES и COMPASS согласованны, среднее значение равно нулю
- Данные HERMES покрывают область больших значений x_F

Выводы

- Коэффициент передачи поляризации для Λ и $\overline{\Lambda}$ гиперонов:
 - $D_{Lx}^{\Lambda} = 0.023 \pm 0.027$ $D_{Lx}^{\overline{\Lambda}} = -0.033 \pm 0.074$
 - $D_{Lz}^{\Lambda} = 0.074 \pm 0.039$ $D_{Lz}^{\overline{\Lambda}} = -0.109 \pm 0.102$
 - Систематическая ошибка на уровне 0.01
- ✓ Коэффициент передачи спина слабо зависит от кинематических переменных
- ✓ Значение для коэффициента передачи D_{LZ} не противоречат с данными эксперимента COMPASS
- ✓ Продольный компонент D_{LZ} дает возможность оценить отношение G⁴₁ D⁹₁
 ✓ Поперечный компонент D_{LX} дает оценку отношения H¹₁ D⁹₁ и G³₁ D⁹₁ для функций фрагментации рождения Λ гиперона в модели П.Малдерса и др.

Результаты работы, вынесенные на защиту

- Измерен коэффициент передачи поляризации в области токовой фрагментации (x_F > 0) для всего объема данных эксперимента HERMES
- Впервые в области токовой фрагментации измерен поперечный компонент передачи D_{LX} для Λ и $\overline{\Lambda}$ гиперонов
- Разработан метод извлечения поляризации в 3-х мерном случае
- Метод для извлечения коэффициента передачи поляризации обобщен на случай несбалансированной поляризации пучка
- Впервые для оценки ложной асимметрии использовались пары разноименно зараженных адронов
- Проведены исследования и разработана методика для восстановления эффективности пропорциональных камер в эксперименте HERMES
- Существующая программа для инициализации и сбора данных с пропорциональных камер эксперимента HERMES была перенесена на новую платформу

<u>Λ(anti-Λ) from hyperon (anti-hyperon) decays (quasi-real photoproduction regime)</u>

