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Introduction

Multivariate methods:

◮ Response variable from 0 to 1.

◮ Reducing expected background, possibly zero at the end, where the expected
signal is maximal.

◮ This is the most important region.

◮ How to treat?

The options:

◮ To accept (to ignore) zeros?

◮ To unify the channels?

◮ To smooth?

The results:

◮ Deterioration of resolution or “look elsewhere” effect?

◮ Optimization of division?

◮ What is the meaning of the result?

No recipe in the literature.
Statistical analysis with the nuisance parameters is not developed.
It needs to start from the basics.



Introduction

Statistical data analysis:

◮ There is one or several measurements of an unknown parameter or its
function.

◮ What is the true value of this parameter?

Two conceptually different approaches:
◮ To estimate, how probable or unprobable are given measurements, if the true

value of the parameter is equal, larger, or smaller than some value.
◮ Likelihood (maximum or ratio).
◮ Frequentism (the method of confidence intervals of Neyman).
◮ Significance of hypothesis.

◮ To estimate, how probable is assumed value of unknown parameter, given
observations.

◮ The Bayesian method.

Two types of estimates:

◮ Point estimates (likelihood, Bayes)

◮ Interval estimates (likelihood ratio (profile), frequentism, Bayes).



Figure 1: Reverend Thomas Bayes (presumably).

Reverend Thomas Bayes, 1702–1761, England. The paper about probabilities was
published in 1763, after his death. “An Essay towards solving a Problem in the
Doctrine of Chances”, Philosophical transactions, 1763.



Figure 2: Pierre-Simon, marquis de Laplace

Pierre-Simon, marquis de Laplace, 1749–1827, France. The “Bayes’ theorem” is
formulated in “Essai philosophique sur les probabilites” (1814). There is am
English translation available in Internet: “A Philosophical essay on probabilities”
(1902).



The Bayes’ theorem in contemporary form

Formula of the full probability:
Let H1, H2, ... , Hn be the full system of events (hypothesis). Let A be some
event. Then

P (A) =
n

X

i=1

P (A|Hk)P (Hk)

According to conditional probability

P (HkA) = P (Hk|A)P (A) = P (A|Hk)P (Hk)

The “Bayes’ theorem”:
Let A be some event, for which P (A) 6= 0. Then

P (Hk|A) =
P (A|Hk)P (Hk)

Pn
i=1 P (A|Hk)P (Hk)

The integral form:

p(µ|x) =
P (x|µ)p(µ)

Z

P (x|µ)p(µ)dµ

.

p(µ) is interpreted as a prior distribution, denoted later as π(µ).



More about priors

If η = η(µ) is monotonically increasing or decreasing function,

P (η ∈ [η(µ1), η(µ2)]) = P (µ ∈ [µ1, µ2]) ⇒ p(η(µ))|η′(µ)| = p(µ)

p(µ|x) ∼ P (x|µ)π(µ)

p(η|x) ∼ P (x|η)π(η) ⇒ p(µ|x) ∼ P (x|µ)|η′(µ)|π(η)

Consequense:

◮ The posteriors expressed in terms of µ and η are identical, if
π(µ) ∼ π(η)|η′(µ)|.

◮ If π(µ) = 1/µ, η = µq , where q is any non-zero power then π(η) = 1/η. The
prior is “invariant” for transformations η = µn for interval estimations. But
such prior:

◮ Shifts the maximum, differently for each q!
◮ Can make the posterior infinite at zero.
◮ With any other η = η(µ) the inveriance for interval estimations does not

hold too.

Other variants, reference priors etc., and philosophy: [R. E. Kass, L. Wasserman
J. Am. Atatist. Assoc. 91(1996) 1343-1370, R. D. Cousins, HCPSS 2009; R. D.
Cousins, Am. J. Phis. 63(5) 1995; PDG; J. Heinrich et. al., CDF note 7117, 2004].

The uniform prior is the most suitable for the main parameter.



More about priors

Assume you have performed an experiment and receive Bayesian probability
density, rejected the tails with area of 5% each, and receive credible interval [2,3].
Can you suggest that the searched parameter is in the interval [2,3] with
probability of 90%?

→ Yes, but the meaning of this probability is a subject of discussions.

At the multiple repetition of the experiment will the interval obtained by this
method include the true value of unknown parameter in 90% cases?

→ No, at fixed s this is not guaranteed.
But at averaging by π(s): yes, it will include. Trivial consequense of the
Bayes theorem (interpreted in terms of sets). Proven once again in terms of
“the average is calculated with respect to the prior density” in [J. Heinrich et.
al., CDF note 7117, 2004].

Prior, which guarantee the frequentist coverage completely: “probability matching
priors”, or approximately: “priors of the first order”. Mathematical difficulties:
[P.D. Baines, X.-L. Meng, PHYSTAT-LHC 2007 pp. 135-138].



Figure 3: Jerzy Neyman.

Jerzy Neyman, 1894–1981, Russia (Bessarabia)—Poland—USA The author of the
method of confidence intervals, the main publication about the method: “Outline
of a Theory of Statistical Estimation, Based on the Classical Theory of
Probability.” Phil. Trans. Roy. Soc. of London, A236(1937)333–380



Figure 4: Sir Ronald Aylmer Fisher

Sir Ronald Aylmer Fisher, 1890–1962, Britain—Australia.
Another school of frequentist statistics, hypothesis tests, significance.



Method of confidence intervals
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Figure 5: Usual confidence belt.

If true s = st1, if x2 is measured, then L2 is higher than st1, and the probability
of this non-coverage is represented by the shaded area.
x < x0: an empty or negative interval!



The sense of confidence intervals

You apply the method of confidence intervals and obtain that for the probability
level 90% the searched parameter is in interval, for example, [2, 3]. What does
that numbers mean?

Searched parameter is in interval [1, 3] with probability of 90%.

→ Wrong!

Searched parameter is with probability of 90% inside an interval, calculated by this
receipt.

→ Right.

What to do with numbers [1, 3]? Nothing!

For what reason they were obtained?

Ar the practice it is assumed that the unknown parameter “most likely” reside
inside or around.

“Most likely” = probably = Bayesian approach.



Intervals and hypothesis

Another example. If the scale at the picture s1 ∼ 1, and the experiment has
resulted in interval [0.0001, 2]. What is the probability that s = 0?

The probability ≈ 5%

→ Wrong!

Correct:

If the interval is central, the probability of lower border computed by this receipt to
be greater than the true parameter value is = 5%. Nothing more can be said. If
the interval is not central, than on the base of the information given nothing can
be said at all.



Intervals and hypothesis

If the experiment has resulted in registration of x < x0, than the interval is empty
(no s is possible) or negative (signal is negative). Neither this nor that can be
understood. If the probability of such x does not exceed 10% (5% for central
intervals), than formally everything is correct. But for practical application this is
yet more senseless, than the “normal” intervals like [1, 3].

The only possible conclusion:

There is a downward fluctuation of background or the model is wrong.

If the experiment has resulted in registration of x > x0, but x ≈ x0, than only
upper border will be non-zero, but it will be almost zero and formal conclusion
about very lower upper border will be doubtful.

The only practical conclusion is the same:

There is a downward fluctuation of background or the model is wrong.



Significance

Significance = the level of incompatibility of measurements with the background
hypothesis

= a measure of probability for background to imitate the observed or larger signal.

Ambiguous, if the background is not known precisely!

Criterium of uniformity (of p-value distribution): valid only when there no
nuisance parameters.

Alternative definition: a measure of incompatibility between the measurement of
the signal+background and the measurement of the background (or its
calculation) taken alone.

Implies statistic and methods of generation of its distribution such that the
distribution depends only on observable values and does not depend or depends
negligibly on background hypothesis.



The test problem. Conditions, notations

Y

i

P (ni, nai, nbi|s, ai, bi) = P (~n, ~na, ~nb|s,~a,~b) =

= P (~n|ta~as + tb~b)P (~na|~a)P (~nb|~b).

Y

i

P (ni, nai, nbi|s, ai, bi) = P (~n, ~na, ~nb|s,~a,~b) = P (~n|ta~a s + tb~b). (1)

If ~a or ~b are assumed to be equal to their most probable values, which for Poisson
distributions results into replacements

Y

i

P (ni, nai, nbi|s, ai, bi) ≈ P (~n|ta~na s + tb~nb). (2)



Conditions of the task, parameters

The true background and signal distribution is

fb(x) = Ce−3x

fa(x) = Ce−3(1−x)

C = (1 − e−3)/3 (3)

The true parameters ai and bi are determined by equalities

ai = Na

Z xi+1

xi

fa(x)dx, (4)

bi = Nb

Z xi+1

xi

fb(x)dx, (5)

Auxiliary experiments: Poisson with parameter Na and Nb.
Main experiment: Poisson with mean taNastrue + tbNb,
where strue is the true signal rate, which is then “forgotten” and has to be
reconstructed.
In this work it is adopted taNa = 25, strue = 2, ta = 0.25, Na = 100.
Nb = 250, tb = 5.



Distrubutions of expected signal and background
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Figure 6: Distributions of ai and bi for 3, 5, 10, and 30 channels if Na = 25 and Nb = 50.



Optimization of divisions

How should the data be divided into channels?
Possible criteria:

◮ Seaching of intervals with minimal width.
→ Danger of the Look-elsewhere effect.

◮ Dividing untill a zero channel appears in the expected background
distribution.

→ Loss of precision if there is truly zero background channel.
→ Too many-channel distributions and a danger of unexpected numerical

problems for experiments with high number of events.

◮ Dividing untill a zero channel appears in the expected signal distribution.
→ Too many-channel distributions and a danger unexpected numerical problems

for experiments with high number of events.

The only universal solution found so far:
Seaching of division with minimal width from those which do not have zeros in the
expected signal distribution.
The limits (for the purpose of optimization) are calculated by the modified
Bayesian method with safe priors (see later).



The Bayesian probability density

p(s|~n) =
P (~n|s)π(s)

Z

P (~n|s)π(s)ds

,

P (~n|s) =
Y

i

Z Z

P (ni, |s, ai, bi)p(ai|nai)p(bi|nbi)daidbi.

p(ai|nai) =
P (nai|ai)π(ai)

Z

P (nai|ai)π(ai)dai

p(bi|nbi) =
P (nbi|bi)π(bi)

Z

P (nbi|bi)π(bi)dbi

This is equivalent to:

p(s|~n) =
N(s)

Z

N(s)ds

,

where

N(s) =
Y

i

Z Z

P (ni, |s, ai, bi)π(s)P (nai|ai)π(ai)P (nbi|bi)π(bi)daidbi



Prior for s

Total absence of information =⇒ no preference to any specific value =⇒ uniform
or flat distribution.

Problem: Metric-dependent. Transormations of s =⇒ either non-uniform prior or
different probabilities. But:

◮ s seems to be in the same metric as n at one channel.

◮ No need to consider other metric.

◮ No need to make the prior invariant for particular sort transformations.

◮ No magic prior, which is invariant for all transormations.

◮ Uniform prior for s will be uniform after translations s + b (with no respect to
zero threshold).

◮ Probability density obtained with the uniform prior can be converted to that
of any other prior.

◮ Prior 1/s and in general the prior with any negative power of s creates
maximum with the infinite amplitude in zero.

◮ Priors are factorized, therefore combinations suppressing singularity, like
1/(s + bi), are not allowed.

Conclusion: the uniform prior for s.



The priors for ai and bi

prior mean σ2 mode
uniform n + 1 n + 1 n
1/

√
µ n + 0.5 n + 0.5 max(n − 0.5, 0)

1/µ n n max(n − 1, 0)

Table 1: Parameters of Bayesian posterior probability density distributions for Poisson
distribution of observations with different priors. The mode is the most probable value.

In one case mean can be important, in other maximum.

Prior exhagarates the parameter =⇒ less signal is needed to describe the
measurements.

Prior underastimates the parameter =⇒ more signal is needed to describe the
measurements.

Safe priors:

◮ For lower limit: both the mean and the maximum should be not smaller than
the measurement.

◮ For upper limit: both the mean and the maximum should be not larger than
the measurement.

[J. Heinrich et al., CDF/MEMO/STATISTISC/PUBLIC/7117] claimed that
“inverse priors are matched to this Poisson case”.
However, there is strong evidence that for the lower border and for significance the
uniform priors are needed.



Central intervals

The area rejected from each side is denoted by α. Then the central intervals:

Z ∞

sL

p(s|~n) ds = 1 − α (6)

and
Z sU

0
p(s|~n) ds = 1 − α (7)

Benefits:

◮ Fixed probability of violation of each separated border.

Drawbacks:

◮ Shortage of frequentist coverage.

◮ The low border is always through out some region around zero, even if the
latter has the maximum probability density. The most probable point can
also be cut off.



Types of intervals
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Figure 7: Probability densities for µ of the Poisson distribution (the one-channel problem
without background), if 3 events are observed. The solid (dashed) smooth line depicts the
probability density distribution for the uniform (inverse) prior. The intervals calculated with
α = 0.158655 are shown by solid and dashed thick lines with different length of dashes. Dotted
lines show horizontal levels.



The modified central intervals

sU is the same as for the central interval.
sL is the minimum of the central sL and sL at the same level of density as it is for
sU:

p(sL|~n) = p(sU|~n).

Benefits:

◮ Good coverage provided correct priors are used.

◮ Always includes the most probable point and a region with the largest
probability density, the lower limit can be zero.

◮ Probability of violation of upper border is fixed.

Drawbacks:

◮ Probability of violation of lower border is variable, but can be determined.



The modified central intervals

observed n
0 2 4 6 8 10 12

lo
w

er
 b

or
de

rs

0

1

2

3

4

5

6

7

8

9

10

Figure 8: The left border of the central interval with uniform prior (dotted line), the left
border of the central interval with inverse prior (dashed line), the left border positioned at the
same probability density level as the right border of the central interval with uniform prior
(solid line), as functions of observed n for the single measurement of the Poisson distribution
without background.



Frequentist Treatment of Maximal Likelihood Estimate
Works
M. Mandelkern J. Schultz, J. Math. Phys. 41 (2000) 5701.
S. Ciampolillo, Nuono Cimento A 111 (1998) 1415.
No nuisance parameters.
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Figure 9: Distribution of observed most probable s (denoted as sm) as function of true s for 5
channels without uncertainties of expected signal and background. See text for other notations.



Frequentist Treatment of Maximal Likelihood Estimate
options for nuisance parameters

◮ Subgeneration:
◮ Nuisance parameters:

◮ Random according to Bayesian approach with ~na and ~nb

with safe priors
(SSP: Subgeneration with Safe Priors).

◮ Fixed most probable for ~na and ~nb

(SM: Subgeneration with the most probable nuisance
parameters).

◮ Variable most probable for ~n, ~na and ~nb at given s

(SA: Subgeneration with the adjusted nuisance
parameters).

◮ Nuisance measurements:
◮ Fixed. (Results in good modeling interpretation.)
◮ Random (RN: Random Nuisance). (Sorter intervals, but

no modeling interpretation.)
◮ Analysis:

◮ ŝ with marginalization by the nuisance parameters
(FMML: Frequency of Marginalized Maximum Likelihood)

◮ ŝ with global maximization by the nuisance parameters
(FGML: Frequency of Global Maximum Likelihood)



Frequentist Treatment of Maximal Likelihood Estimate,
studied combinations

◮ SSP–FMML.

◮ SSP–FGML.

◮ SMRN–FGML.

◮ SARN–FGML.

◮ SSPRN–FMML.

◮ SSPRN–FGML.



The Method of Likelihood Ratio (profile)

P (~n, ~na, ~nb|s,~a,~b) =
Y

i

P (ni, |s, ai, bi)P (nai|ai)P (nbi|bi)

The likelihood ratio is

R(s) =
sup

s,~a,~b
(P (~n, ~na, ~nb|s,~a,~b))

sup
~a,~b

(P (~n, ~na, ~nb|s,~a,~b))

Writing the integral of Gaussian in the form

F (z) =
1√
2π

Z z

−∞

e−t2/2 dt

one obtains z for given p-value by z = F−1(1 − p). Finding interval borders slower

and supper such that

2 ln(R(slower)) = 2 ln(R(supper)) = z2



Frequentist Treatment of Likelihood Ratio,
Statistics

Q(s) =
P (~n|ŝ)

P (~n|sref)
. (8)

Initially proposed sref = 0.
A. L. Read, 1st Workshop on Confidence Limits, CERN, Geneva Switzerland,
2000, CERN-2000-005, pp 81-101.
Local notation: Background Ralated (BR).

sref maximizes P (~n|sref), but constrained in the [0, s] interval. This can be used
for upper interval border.
The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs
Combination Group, Procedure for the LHC Higgs boson search combination in
Summer 2011. August 2011, ATL-PHYS-PUB-2011-11, CMS NOTE-2011/005.
Significance, s = 0, hence sref simply maximizes P (~n|sref) in the interval [0, +∞] .
By analogy (my extension), for the lower border sref can be chosen such that it
maximizes P (~n|sref), and constrained by sref ≥ s.
Local notation: the LHC-style method, constrained-maximum-related method
(CMR).
Unified approach: Local notation: unconstrained-maximum-related (UMR).



Frequentist Treatment of Likelihood Ratio,
Setting Limits

General equation, the probability of signal plus background to coincide or to
exceed the observed value:

CLs+b = Ps+b(Q ≤ Qobs) =
X

~nγ :

Q(~nγ ,~a,~b,s)≤Q(~n,~a,~b,s)

P (~nγ |s,~a,~b) = α . (9)

Local notation: Frequency of Likelihood Ratio (FLR).
The significance, the probability of background to coincide or to exceed the
observed value (at s = 0):

CLb = Pb(Q ≤ Qobs) =
X

~nγ :

Q(~nγ ,~a,~b,s)≤Q(~n,~a,~b,s)

P (~nγ |su = 0,~a,~b) . (10)

Problems of LHC-style CLs+b

◮ Exclusion of signal with true s with probability equal to α even for
experiments microscopically dependant on signal. [Read et all, 2000]

◮ Ridiculously low upper limit at backward fluctuation of signal.

Solved by dividing CLs+b by CLb and substituting in Eq. (9). The researcher
takes into account how well the experiment is described by the background. Local
notation: normalization (NFLR).



Frequentist Treatment of Likelihood Ratio,
One channel, dependence on n.

Measured n
0 2 4 6 8 10 12 14 16 18 20

µ
S

ig
na

l M
ea

n 

0

2

4

6

8

10

12

14

16

18

20

central Bayesian

modified central
            Bayesian

likelihood ratio

FML

Measured n
0 2 4 6 8 10 12 14 16 18 20

µ
S

ig
na

l M
ea

n 
0

2

4

6

8

10

12

14

16

18

20
unified approach
SARN-GM-CMR-

)
s+b

          -FLR(CL
SARN-GM-CMR-

)
s

    NFLR(-CL

unified
approach
divided by

b     CL

SARN-FGML-
-GM-CMR--FLR

Figure 10: The confidence intervals for the one-channel problem with known auxiliary
parameters a = 1 and b = 5, ta = tb = 1, for different observed n by different methods.



Frequentist Treatment of Likelihood Ratio,
Maximum Related Method, Handling Nuisance Parameters

◮ Subgeneration:
◮ Nuisance parameters:

◮ Random according to Bayesian approach with ~na and ~nb

with safe priors
(SSP: Subgeneration with Safe Priors).

◮ Fixed most probable for ~na and ~nb

(SM: Subgeneration with the most probable nuisance
parameters).

◮ Variable most probable for ~n, ~na and ~nb at given s

(SA: Subgeneration with the adjusted nuisance
parameters).

◮ Nuisance measurements:
◮ Fixed. (Results in good modeling interpretation.)
◮ Random (RN: Random Nuisance). (Shorter but no

interpretation.)
◮ Analysis:

◮ Separate marginalization by the nuisance parameters
(MM: Marginalized Maximum)

◮ Separate maximization by the nuisance parameters (GM:
Global Maximum)



Frequentist Treatment of Likelihood Ratio,
Combinations

◮ Since ŝ is calculated anyway for denominator, it can be compared
separately with the observed one with logical AND.
This is the merge of FML-methods and FLR-methods.
Local notation: adding FMML or FGML.

◮ Lower limit by CMR–NFLR is reasonable to combine with
UMR–FLR in order to reduce undercoverage at large number of
zeros in the expected background.

◮ RN FLR methods usually have non-trivial minima and maxima at
floating nuisance parameters.
It is extremely difficult to find them.
If they exist and can be found, they constitute very good methods.
Local notation: “Min/Max”.



Frequentist Treatment of Likelihood Ratio,
Studied Combinations

◮ SSP–MM–CMR–NFLR.

◮ SSP–GM–CMR–NFLR.

◮ SSP–FMML–MM–CMR–NFLR.

◮ SSP–FGML–GM–CMR–NFLR.

◮ SSPRN–MM–CMR–NFLR.

◮ SSPRN–GM–CMR–NFLR.

◮ SMRN–MM–CMR–NFLR.

◮ SMRN–GM–CMR–NFLR.

◮ SARN–MM–CMR–NFLR.

◮ SARN–GM–CMR–NFLR (LHC-style CLs).

◮ SARN–MM–UMR–FLR.

◮ SARN–GM–UMR–FLR (Unified approach with globalization).

◮ Asymptotic SARN–MM–UMR–FLR.

◮ Asymptotic SARN–GM–UMR–FLR.

◮ Min/Max–RN–MM–CMR–NFLR.

◮ Min/Max–RN–GM–CMR–NFLR.

◮ SARN–FMML–MM–CMR–NFLR.

◮ SARN–FGML–GM–CMR–NFLR.

◮ SARN–MM–CMR–NFLR–UMR–FLR.

◮ SARN–GM–CMR–NFLR–UMR–FLR.



Bayes, no uncertainties
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Interval width: fixed, optimized.



Bayes, uncertainty of the expected background
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Bayes, uncertainty of the expected background
echanged priors.
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Bayes, uncertainty of the expected signal.
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SSP–FMML, uncertainty of the expected background
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SSPRN–FMML, uncertainty of the expected background
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SMRN–FGML, uncertainty of the expected background
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SARN–FGML, uncertainty of the expected background
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Likelihood Ratio, uncertainty of the expected background

1 10

co
ve

ra
ge

70

75

80

85

90

95

100

1 10

si
gn

al
 a

m
pl

itu
de

0

1

2

3

4

5

6

number of channels
1 10

si
gn

al
 a

m
pl

itu
de

0

1

2

3

4

5

6



LHC CLs, uncertainty of the expected background

1 10

co
ve

ra
ge

80

82

84
86

88

90

92
94

96

98

100

1 10

si
gn

al
 a

m
pl

itu
de

0

1

2

3

4

5

6

number of channels
1 10

si
gn

al
 a

m
pl

itu
de

0

1

2

3

4

5

6



Simple examples

Table 2: Comparison of signifance obtained by different methods for the simple
one-channel and two-channel examples.

n 67 60 88 37, 51 7
ta 1 1 1 1 1
a / na 1 / – 1 / – 1 / – 1, 1 / –, – – / 3
tb 2 10 10 10 1
b / nb – / 15 – / 0 – / 3 –, – / 3, 0 2 / –

z z z limits z limits z
Bayesian central — — — 23.6–81.9 — 33.0–75.3 —
Bayesian central modified — — — 23.6–81.9 — 33.1–75.3 —
Likelihood Ratio — — — 28.0–79.9 — 49.1–74.0 —
SSP–... 2.86 2.70 1.88 19.7–81.3 2.45 32.4–74.9 2.64

SSP–... means SSP–FMML, SSP–FGML, SSP–MM–CMR–NFLR,
SSP–GM–CMR–NFLR, SSP–FMML–BM–CMR–NFLR, SSP–FGML–BM–CMR–NFLR,
which are approximately the same fro these examples.

Continuation on the next page.



z z z limits z limits z
Bayesian central — — — 23.6–81.9 — 33.0–75.3 —
Bayesian central modified — — — 23.6–81.9 — 33.1–75.3 —
Likelihood Ratio — — — 28.0–79.9 — 49.1–74.0 —
SSP–... 2.86 2.70 1.88 19.7–81.3 2.45 32.4–74.9 2.64
SEP–... 3.06 ∞ 2.33 33.0–74.3 4.75 52.2–67.3 2.64
SDSP–FMML/FGML 3.66 4.12 2.74 32.4–77.7 3.80 43.7–74.6 2.65
SSPRN–FMML/FGML 3.68 4.06 2.84 33.1–84.0 3.59 44.0–73.9 2.10
SSPRN–GM(MM)–CMR–NFLR 3.01 4.32 ≈ 2.1 24.1–80.1 3.86 47.9–74.0 2.69
SMRN–FGML 4.07 ∞ 5.17 34.2–85.1 &5.2 51.9–74.6 1.43
SARN–FGML 2.94 2.89 2.08 24.7–79.5 2.74 44.0–75.0 1.43
SMRN–GM–CMR–NFLR 3.03 ∞ 1.76 24.1–79.4 &5.2 51.0–74.5 2.68
SARN–GM–CMR–NFLR 3.01 3.07 2.09 24.4–79.6 2.85 45.0–74.5 2.68
Asymptotic GM–UMR–FLR 3.04 3.38 2.19 — 3.12 — 2.75

Used nuisance parameters 27.3 5.45 8.27 3.6, 4.6
Minimal RM–GM–CMR–NFLR 2.83 3.04 1.74 13.7–82.6 2.71 41.7–75.1 2.68

Best nuisance parameters 5.0 2.8 &20, 5.4
SARN–FGML–GM–CMR–FLR 2.92 2.93 2.04 23.4–80.2 2.68 43.1–74.6 1.71
SARN–GM–CMR–NFLR–

–UMR–FLR 3.01 3.07 2.09 24.1–79.4 2.85 45.0–74.5 2.68
SARN–FGML–GM–CMR–

–FLR–UMR–FLR 2.92 2.93 2.04 23.4–80.2 2.68 43.1–74.6 1.71
SMRN–MM–CMR–NFLR 3.01 ∞ 2.08 26.7–79.2 &4.75 51.7–74.3 2.77
SARN–MM–CMR–NFLR 3.01 3.08 2.10 24.4–79.6 2.86 44.0–74.2 2.77
Asymptotic MM–UMR–FLR 3.01 3.11 2.16 — 2.85 — 2.62
Minimal RM–MM–CMR–NFLR 3.02 3.04 2.00 24.4–84.2 2.73 37.5–74.5 2.65

Best nuisance parameters & 15 5.5 3.4 &20, 5.7
SARN–FMML–MM–CMR–FLR 2.92 2.84 2.05 23.4–80.2 2.60 42.5–74.5 2.03
SARN–MM–CMR–NFLR–

–UMR–FLR 3.01 3.07 2.10 24.4–79.6 2.86 39.9–74.2 2.77
SARN–FMML–GM–CMR–

–FLR–UMR–FLR 2.92 2.84 2.05 23.4–80.2 2.60 39.9–74.5 2.03



Conclusions
Bayesian approach:

◮ To use safe priors.
◮ To use modified central intrervals.
◮ Simple calculations.
◮ Clear interpretation, including similar to the frequentist one.
◮ No classical significance.

Likelihood ratio (profile).
◮ Technically simple.
◮ No statistical interpretation.
◮ Slightly insuffisient coverage of intervals.
◮ No classical significance.

Frequentist approach:
◮ Calculates not only intervals but also significance.
◮ Many methods with different results, no strict rule for selection.
◮ Technical difficulties, computing difficulties.
◮ Sometimes no clear interpretation.
◮ The most promising: SSP–FMML, SSP–MM–CMR–NFLR,

SSP–FMML–MM–CMR–FLR, Min/Max–RN–MM–CMR–FLR,
Asymptotic RN–MM–UMR–FLR.
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