Проверка предсказаний Стандартной Модели в эксперименте LHCb

15 марта 2016 г.

Алексей Дзюба / ФГБУ ПИЯФ НИЦ КИ

О чем я хочу рассказать:

<u>Цель доклада:</u> Показать как (непрямые) измерения эксперимента LHCb соотносятся с предсказаниями Стандартной модели физики элементарных частиц (CM)

- Стандартная модель (СМ) и Новая физика:
 - Трудности СМ.
 - Масштабы Новой физики (НФ).
 - Модели НФ с минимальным нарушением симметрии ароматов.
 - Непрямые измерения.
- Эксперимент LHCb (детектор, набор и анализ данных *etc*.)
- Самые интригующие результаты LHCb
 - Редкие распады
 - Результаты расходящиеся с предсказаниями СМ
 - Изучение лептонной универсальности
 - Измерение элементов матрицы кваркового смешивания (ККМ-матрицы)
- Заключение и взгляд в будущее (на что можно будет рассчитывать после апгрейда?)

Доклады LHCb на Семинарах в ЦЕРНе

30 Jun 2015 Brian Hamilton, "Measurement of the semitauonic decay $B^0 \rightarrow D^*\tau v$ at LHCb" https://cds.cern.ch

26 May 2015 Victor Coco, "Observation of top-quark production in the forward region with LHCb" https://cds.cern.ch/record/2018487?ln=en

24 Mar 2015 Patrick Owen, "First determination of V_{ub} using the exclusive decay $\Lambda_b \rightarrow p\mu v$ with the LHCb
detector"https://cds.cern.ch/record/2004374?ln=en

10 Feb 2015 Marco Pappagallo, "Latest results on b-hadron spectroscopy at LHCb" https://cds.cern.ch/record/1988103?ln=en

18 Nov 2014 Sevda Esen, "Measurement of the B_a mixing phase at LHCb"

https://cds.cern.ch/record/1971320?ln=en

30 Sep 2014 Mika Anton Vesterinen, "Measurement of semileptonic asymmetries at LHCb" https://cds.cern.ch/record/1951445?ln=en

12 Aug 2014 Manuel Tobias Schiller, "Gamma measurements in B_s->D_sK and other tree-level decays" https://cds.cern.ch/record/1749146?ln=en

3 Jun 2014 Greig Cowan, "Confirmation of the Z(4430)- resonance and other exotic meson results from the LHCb experiment" https://cds.cern.ch/record/1706201?ln=en

18 Mar 2014 Albert Puig Navarro, "Observation of photon polarization in the b → sγ transition at LHCb" https://cds.cern.ch/record/1706201?ln=en ³

Стандартная Модель (СМ)

Элементаные частицы =2.3 MeV/c² *1.275 GeV/c² =173.07 GeV/c2 =126 GeV/c² Macca 2/3 0 Заряд g Н 1/2 Спин 1/2 1/2 Higgs boson charm gluon up top n4.8 MeV/c² =95 MeV/c² n4.18 GeV/c¹ KBAPKN -1/3 -1/3 -1/3 S переносчики b 1/2 1/2 1/2 bottom photon down strange 1,777 GeV/c³ 91.2 GeV/c^a 0.511 MeV/c³ 105.7 MeV/c² взаимодействия е т 1/2 I Z boson electron muon tau ЛЕПТОНЫ 5030Hbl <2.2 eV/c² <0.17 MeV/c2 <15.5 MeV/c² 80.4 GeV/c² \mathcal{D}_{e} tau neutrino electron muon W boson neutrino neutrino

Адроны – частицы, участвующие в сильном взаимодействии Теория, которая прекрасно работает на масштабе энергий < 1 ТэВ (нет сильных конфликтов с экспериментами, несколько измерений всё же расходятся с СМ)

Новая физика:

1) Нейтринный сектор

(массы, осцилляции нейтрино)

- 2) Иерархия масс фермионов
- 3) Проблема радиационных поправок к m_н
 - тонкая подстройка

- калибровочная пустыня между $M_{_{\rm EW}}$ и $M_{_{\rm GUT}}$

- 4) Астрофизические наблюдения
 - темная материя
 - барионная асимметрия Вселенной

Суперсимметрия?, Неминимальный хиггсовский механизм?

Непрямые измерения

НФ и симметрия ароматов; Коэффиценты Вильсона

- Вычисление КХД-поправок критически необходимо для рассмотрения ΔF=1 процессов (Вычисления *C_i* в рамках СМ, высокая предсказательная сила)
- Н_{eff} эффективный способтеста различных моделей НФ, т.к. С_i зависит от её ароматовой структуры.
- Minimal Flavour Violation (MFV) подход: НФ имеет такюще ароматовую структуру как СМ

=> такие же эффекты СР-нарушения как в СМ, соотношения типа:

 $\frac{\mathrm{BR}(B_{\mathrm{s}} \rightarrow \mu^{+}\mu^{-})}{\mathrm{BR}(B_{\mathrm{d}} \rightarrow \mu^{+}\mu^{-})} = \frac{\tau_{B_{\mathrm{s}}} f_{B_{\mathrm{s}}}^{2} m_{B_{\mathrm{s}}} |V_{ts}|^{2}}{\tau_{B_{\mathrm{d}}} f_{B_{\mathrm{d}}}^{2} m_{B_{\mathrm{d}}} |V_{td}|^{2}}$

• ΔF=1 операторы в CM и MFV:

$$\mathcal{H}_{\mathrm{eff}} = -rac{4~G_F}{\sqrt{2}} rac{e^2}{16\pi^2} rac{V_{tb}V_{ts}^*}{V_{ts}} \sum_i rac{C_iO_i}{i} + \mathrm{h.c.}$$

 Если НФ содержит дополнителоьные источники нарушения симметрии ароматов, то С_i становятся комплексными и могут появится дополнительные источники СРнарушеия.

Рождение b- и с-кварков

Largest charm samples in the world Nucl.Phys.B871 (2013) 1

Данные 2010-12гг.

pp-столкновения at √s = 7 & 8 TeV (2011-12)

*p*Pb-столкновения at $√s_{NN} = 5$ TeV in 2013

-Высокая эффективность записи

- 50 ns между столкновениями

(25 ns в 2015 году)

- Постоянная светимость ~4·10³² сm⁻²s⁻¹

(в два раза выше номинальной)

- 1.7 первичных вершин на пересечение

Экспериментальная установка

10

Анализ данных в LHCb

Эффективный триггер(L0/HLT1/HLT2):

 $40MHz \rightarrow 5kHz$

Таггинг ароматов

Отбо событий

Кинематическая и топологическая инф. (p_{τ} , p, IP, vertex and track quality)

Идентификация сорта частиц

«Каты», мультавариантный анализ BDT, Neurobayes, etc.

Оптимизация критериев отбора

Используя Монте-Карло Небольшие наборы данных

Угловлй анализ++

Систематика

Множетво проверок!

Анализ распада $B^0 \rightarrow K^* \mu^+ \mu^-$

 B^0

 $\begin{bmatrix}
y_{2}\\y_{1}\\y_{2}\\y_{3}\\y_{4}\\y_{6}\\y_{4}\\y_{6}\\y$

- "Мягкие" начальные критерии отбора
- Тренировка BDT-метода на *B* → *K***J/ψ*
- Оценка фона из сомбытий с массой > m(B)
- Переменные не скоррелированы с углами и q²=m²(µµ)
- Набор для BDT: время жизни, направление вылета, качество треков и восстановления вершин, р_т, идентификационные переменные

Результат для $1 < q^2 < 6 \text{ GeV}^2/c^4$

Амплитудный анализ $B^0 \rightarrow K^* \mu^+ \mu^-$

– три угла + q² для описания данных

- **F**, **A**_{**FR}** & **S**, билинейные комбинации амплитуд</sub>

(КТП на малых расстояниях + адронные форм-факторы)

- Точные теоретические предсказания

Altmannhofer, Bharucha, Straub, Zwicki [1503.05534][1411.3161]

 $\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\bar{\Omega}} \bigg|_{\mathrm{P}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1-F_{\mathrm{L}}) \sin^2\theta_K + F_{\mathrm{L}} \cos^2\theta_K$ $+\frac{1}{4}(1-F_{\rm L})\sin^2\theta_K\cos 2\theta_L$ $-F_{\rm L}\cos^2\theta_K\cos 2\theta_l + S_3\sin^2\theta_K\sin^2\theta_l\cos 2\phi$ $+S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi$ $+\frac{4}{2}A_{\rm FB}\sin^2\theta_K\cos\theta_l + S_7\sin2\theta_K\sin\theta_l\sin\phi$ $+S_8\sin 2\theta_K\sin 2\theta_l\sin \phi + S_9\sin^2\theta_K\sin^2\theta_l\sin 2\phi$

JHEP 02 (2016) 104

Амплитудный анализ $B^0 \rightarrow K^* \mu^+ \mu^-$

– Пример модели: Z', изменяющий аромат

Test of lepton flavour universality

Распад $B_{s}^{0} \rightarrow \varphi \mu^{+} \mu^{-}$

– Процедура похожа на анализ

 $B^0 \rightarrow K^*\mu\mu$

- Нечувствительно к Р'
- Амплитуднай анализ
- CM: arXiv:1411.3161, 1503.05534
- Аномалия наблюдалась и ранее на 1fb⁻¹ наборе данных **JHEP 07** (2013) 084
- Экстраполяция на весь ФО (q²)
 (используя PRD 66, 034002 & PRD 71, 014029)

JHEP 09 (2015) 179

$$\frac{\mathcal{B}(B_s^0 \to \phi \mu \mu)}{\mathcal{B}(B_s^0 \to \phi J/\psi)} = (7.40^{+0.42}_{-0.40} \pm 0.20 \pm 0.21) \times 10^{-4}$$
$$\mathcal{B}(B_s^0 \to \phi \mu \mu) = (7.97^{+0.45}_{-0.43} \pm 0.22 \pm 0.23 \pm 0.60) \times 10^{-7}$$

Распад $\bar{B}^0 \rightarrow D^* \tau \bar{\upsilon}$

- Измерение отношения:

Phys. Rev. Lett. 115 (2015) 112001

$$\mathcal{R}(D^*) = rac{\mathcal{B}(B o D^* au
u)}{\mathcal{B}(B o D^* \mu
u)}$$

- Нет особых теоретических трудностей
- Чувствительно к моделям с заряженными бозонами хиггса и к non-MFV моделям с "сильной" связью с т.
- Сигнал не пикуется, высокий фон
- Формы спектров и МК-моделирования, проверено на данных

$${\cal R}(D^*) = 0.336 \pm 0.027 \pm 0.030$$

- Отклонение от предсказаний СМ на уровне 2.1 о
- Основная систематики из МК-моделирования

Измерение |V_{ub}|

- |V_{ub}| измерен хуже всех остальных элементов ККМ-матрицы

– Расхождение результатов эксклюзивных ($\mathbf{B} \rightarrow \pi \mathbf{l} \mathbf{v}$) и инклюзивных (any $\mathbf{b} \rightarrow \mathbf{u} \mathbf{l} \mathbf{v}$) методов измерения $|V_{ub}|$

- LHCb измеряло отношение:

$$\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow p\mu\nu\right)/\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}(\rightarrow pK\pi)\mu\nu\right)$$

- Чувствительно к |V_{ub}| / |V_{cb}|
- Расчеты КХД на решетках для больших q²
 [arXiv:1503.01421]
- Спектр скорректированной массы

$$M_{corr}=\sqrt{p_{\perp}^2+M_{p\mu}^2+p_{\perp}}$$

– Выбор между двумя **q**², миграция событий Решение **q**² > 15 GeV²/с⁴

– Запрет на дополнительные треки близкие ко вторичной вершине для уменьшения фона
 – Систематика: Λ_c → pKπ BF, модель распада, триггерная и треккинговая эффективности

Заключение

LHCb спектрометр частиц, вылетающих вперед,

- Проверка Стандартной Модели
- Поиск эффектов Новой физики в непрямых изменениях
- Также: исследование СР-нарушения в b- и c-секторах СМ

На сегодняшний момент LHCb – лучшее место для изучения b- и с-физики Большенство измерений подтверждает предсказания СМ, но есть и расхождения Обработка результатов первого сеакса (3 fb⁻¹) близка к завершению

<u>Взгляд в будущее:</u>

1) Планируется ~ 5 fb⁻¹ при √s = 13-14 TeV во втором сеансе работы LHC (2015-18)

- 2) Критически необходима проверка другими экспериментами Belle-II, CMS, ATLAS
- 3) Программа модернизации (**upgrade**) LHCb

Теория vs. 50 fb⁻¹

Туре	Observable	LHCb 2018	Upgrade (50 fb ⁻¹)	Theory uncertainty
B_s^0 mixing	$2\beta_s(B_s^0 \to J/\psi\phi)$	0.025	0.008	~0.003
	$2\beta_s(B_s^0 \rightarrow J/\psi f_0(980))$	0.045	0.014	~ 0.01
	$a_{\rm sl}^s$	$0.6 imes 10^{-3}$	0.2×10^{-3}	0.03×10^{-3}
Gluonic penguins	$2\beta_s^{\rm eff}(B_s^0 \to \phi\phi)$	0.17	0.03	0.02
	$2\beta_s^{\rm eff}(B_s^0 \to K^{*0}\overline{K}^{*0})$	0.13	0.02	< 0.02
	$2\beta^{\rm eff}(B^0 \to \phi K^0_S)$	0.30	0.05	0.02
Right-handed currents	$2\beta_s^{\rm eff}(B_s^0 \to \phi_\gamma)$	0.09	0.02	< 0.01
	$\tau^{\rm eff}(B^0_s\to\phi\gamma)/\tau_{B^0_s}$	5 %	1 %	0.2 %
Electroweak penguins	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{ GeV}^2/c^4)$	0.025	0.008	0.02
	$s_0 A_{\rm FB} (B^0 \to K^{*0} \mu^+ \mu^-)$	6 %	2 %	7 %
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)/\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	8 %	2.5 %	$\sim \! 10 \%$
Higgs penguins	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$0.5 imes 10^{-9}$	$0.15 imes 10^{-9}$	$0.3 imes 10^{-9}$
	$\mathcal{B}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$\sim 100 \%$	$\sim 35~\%$	$\sim 5~\%$
Unitarity triangle angles	$\gamma(B\to D^{(*)}K^{(*)})$	4°	0.9°	negligible
	$\gamma(B_s^0 \to D_s K)$	11°	2.0°	negligible
	$\beta(B^0 \to J/\psi K_{\rm S}^0)$	0.6°	0.2°	negligible
Charm CP violation	A_{Γ}	0.40×10^{-3}	$0.07 imes 10^{-3}$	-
	ΔA_{CP}	0.65×10^{-3}	$0.12 imes 10^{-3}$	-

EPJ C 73 (2012) 2373