Исследование спиновых эффектов на ускорителе У-70 ИФВЭ

В. Мочалов ФГБУ ГНЦ ИФВЭ НИЦ КИ

Содержание

- Введение что мы знаем об односпиновых асимметриях в сильном взаимодействии
- Исследование односпиновых асимметрий на ускорителе У-70 в ИФВЭ
- Программа новых спиновых исследований в ИФВЭ
 - Возможность создания поляризованного пучка
- Сотрудничество СПАСЧАРМ
 - Возможность сотрудничества ИФВЭ и ПИЯФ
- Заключение

Сущность спина

- Спин s в квантовой механике обозначает собственный момент импульса частиц. В отличие от орбитального момента импульса, спин не связан с перемещением в пространстве частицы, и является её внутренней характеристикой, наподобие массы или заряда.
- Спин является особой и весьма нетривиальной составляющей углового момента (момента импульса) со специфическими свойствами, и *его* природа всё ещё - спустя почти 100 лет после открытия – остаётся тайной.
- Спин, как и момент импульса, представляется аксиальным вектором. Спиновое квантовое состояние частицы полностью определяется проекцией спина на некоторую ось квантования (часто направление этой оси в пространстве выбирается вдоль внешнего магнитного поля). Общее число проекций спина равно 2s+1.

Чем важны поляризационные исследования в сильных взаимодействиях ?

•Интерес к исследованию спиновой зависимости сильного взаимодействия связан с возможностью изучения <u>динамики</u> взаимодействия и спиновой структуры адронов через взаимодействия партонов, имеющих ненулевой спин.

•Для проведения поляризационных исследований надо создавать пучки поляризованных частиц, использовать технику поляризованных мишеней. В последние годы произошел заметный прогресс в экспериментальном изучении спиновых эффектов при высоких энергиях, подавляющее большинство экспериментов было проведено в области непертурбативной КХД (при умеренных поперечных импульсах).

•Развивается теоретическое осмысление спиновых эффектов. Однако сегодня *нет теории*, претендующей на полное описание всех наблюденных поляризационных эффектов.

•Новые экспериментальные результаты в этой трудной для теоретиков области непертурбативной КХД важны для развития теоретических подходов и возможного создания теории (модели) для описания всех спиновых эффектов. Что мы Энали о роли спина в сильных взаимодействиях • Спиновые эффекты в сильных

взаимодействиях Малы:

- Односпиновая асимметрия мала и мадает с ростом энергии (m_q/√s)
- Асимметрия Кадает с ростом поперечного импульса.
- Спин протона бостоит из спина кварков

ТЕОРИЯ И ПРАКТИКА

	Теория	Эксперимент
Вклад спина кварков в спин протона (наивно)	1	1/3
Вклад спина глюонов в спин протона	неизвестно	Близко к нулю при малых х
Односпиновая асимметрия адронов	< 1%	До 40% в ряде реакций
Зависимость асимметрии от энергии и поперечного импульса	падает	Практически не зависит
Отношение электрического форм-фактора к магнитному	1	Падает до нуля
Спиновые эффекты в участием антипротонов	неизвестно	Практически нет данных
СР нарушение в поляризации	неизвестно	Нет данных

04.10.2016

Формула вычисления односпиновой асимметрии

Односпиновая асимметрия определяется как

$$A_N^H(x_f, p_t) = \frac{1}{P_{target}} \frac{1}{\langle \cos\phi \rangle} \cdot \frac{\sigma^H_{\uparrow}(x_f, p_t) - \sigma^H_{\downarrow}(x_f, p_t)}{\sigma^H_{\uparrow}(x_f, p_t) + \sigma^H_{\downarrow}(x_f, p_t)}$$

*P*target – средняя поляризация мишени;

 ϕ – азимутальный угол;

(При малых углах ϕ считается, что все вторичные частицы вылетают под азимутальным углом 0°).

Измеряемая асимметрия

$$A_N = \frac{D(x_f, p_t)}{P_{target}} \cdot A_N^{raw}(x_f, p_t) = \frac{D(x_f, p_t)}{P_{target}} \cdot \frac{n_{\uparrow}(x_f, p_t) - n_{\downarrow}(x_f, p_t)}{n_{\uparrow}(x_f, p_t) + n_{\downarrow}(x_f, p_t)}$$

D - фактор разбавления мишени (отношение числа взаимодействий на всей мишени к числу взаимодействий на водороде)

04.10.2016

Односп наивнс

In this note we have pointed out that the asymmetry off a polarized target, and the transverse polarization of a produced quark in $e^+e^- \rightarrow q\bar{q}$, or in $qq \rightarrow qq$ at large p_T , or in leptoproduction,

turbatively in QCD. 0 and is numerically s corrections for light test the predictions. *P* is small, tests large- p_T production b for $p_T \gtrsim 2 \text{ GeV}/c$], fragmentation effects they cannot (by parity rization. Consequentnt polarizations in the radict either QCD or

Асимметрия п

Kane, Pumpkin and Repko PRL 41 1978

В формуле сечения процесса 2 -> 2 нет спиновозависящих функций

$$E_h \frac{d\sigma^{AB \to hX}}{d^3 p_h} = \sum_{a,b,c,d} \int dx_a dx_b dz_h f_a(x_a) \cdot f_b(x_b) \cdot \frac{\hat{s}}{z_h^2 \pi} \frac{d\sigma^{ab \to cd}}{d\hat{t}} \delta(\hat{s} + \hat{t} + \hat{u}) \cdot D_{h/c}(z)$$

04.10.2016

Первые измерения односпиновой асимметрии в Протвино

В 1978 г. (почти 40 лет!) первые исследования с использованием поляризованной протонной мишени ИФВЭ-ОИЯИ

04.10.2016

Поляризация в реакции ^{___}р,→^{__}п

- Поляризация *P(t)* в области 0<|t|<0.35 (GeV/c)² равна (5.0±0.7)%.
- Существует локальный минимум в области при t=-0.25 (GeV/c)^{2.}
- Поляризация имеет минимум в области минимума в дифференциальном сечении.
- Поляризация осциллирует.

Поляризация в реакциях $\pi^{-}p_{\uparrow} \rightarrow \eta n$ and $\pi^{-}p_{\uparrow} \rightarrow \eta'(958)n$

Асимметрия в реакциях

<mark>π⁻р</mark>₄→<mark>ω(783)</mark>n и π⁻р_↑→f₂(1270)n

- ω регистрируется в моде распада πγ (branching 8.9%).
- Асимметрия велика в обеих реакциях
- Асимметрия минимальна примерно в области изменения наклона сечения как для ю, так и для f₂

В. Мочалов, Семинар ОФВЭ ПИЯФ

Выводы по эксклюзивным реакциям

- Большие значения поляризации (асимметрии) были обнаружены при 40 ГэВ в реакциях $\pi^{-}p_{\uparrow} \rightarrow \pi^{0}n, \pi^{-}p_{\uparrow} \rightarrow \eta n, \pi^{-}p_{\uparrow} \rightarrow \eta'(958)n, \pi^{-}p_{\uparrow} \rightarrow \omega(783)n, \pi^{-}p_{\uparrow} \rightarrow f_{2}(1270)n$
- Для всех реакций минимум асимметрии совпадает с изменением наклона дифференциального сечения
- Во всех реакциях наблюдаются осцилляции асимметрии
- Есть указание, что асимметрия больше по величине для «тяжелых» частиц и в области —t=1 (ГэВ/с)² асимметрия отрицательна, тогда как для т⁰-мезона положительна.
- Ни одна теоретическая модель НЕ может объяснить результаты измерений.

Исследования инклюзивных процессов на установке ПРОЗА-М

23.05.2013

УСТАНОВКА ФОДМ-2 ДЛЯ ИЗМЕРЕНИЯ ОДНОСПИНОВОЙ АСИММЕТРИИ ИНКЛЮЗИВНОГО РОЖДЕНИЯ ЗАРЯЖЕННЫХ АДРОНОВ

- Экспериментальная установка создана для регистрации заряженных адронов под различными углами при высокой интенсивности пучка (до 10⁹ р/цикл)
- 1994: Создан пучок поляризованных протонов (до to 3x10⁷)
- Измерение асимметрии рождения π[±], K[±], p[±]:

РЕЗУЛЬТАТЫ ФОДС ПО ОДНОСПИНОВОЙ АСИММЕТРИИ

04.10.2016

ПОЛЯРИЗАЦИОННАЯ ПРОГРАММА НА УСТАНОВКЕ ФОДС

- Экспериментальная установка модифицирована таким образом, чтобы существенно (в 4 раза) увеличить апертуру и эффективность трековой системы
- Физические задачи:
 - Увеличить статистику (улучшить точность) измерений односпиновой асимметрии для изучения возможных осцилляций
- Увеличенная апертура позволяет изучать спиновые эффекты в реакции *p*↑ + *p*→*π*⁺+*π*⁻+ *X* (эффективность регистрации пионных пар возрасла в 16 раз)

04.10.2016

- Большие значения асимметрии инклюзивного рождения пионов (ПРОЗА и ФОДС) в центральной области НЕ могут быть объяснены в рамках современных моделей.
- Расчеты в рамках моделей Сиверса и высших твистов предсказывают уменьшение асимметрии с ростом р_т (что противоречит экспериментам при энергиях ИФВЭ)
- Асимметрия инклюзивного рождения в области фрагментации поляризованной частицы НЕ зависит от энергии пучка (как и поляризация гиперонов), таким образом:

Исследование спиновых эффектов при промежуточных энергиях пучка (15-60 ГэВ) – необходимый и полезный инструмент изучения поляризационных эффектов в различных реакциях Высокая точность измерения может быть важнее, чем высокая энергия

ПРОЗА – ответы и вопросы по результатам инклюзивных измерений

- Асимметрия практически не зависит от энергии (E704, BNL, RHIC)
- Существенные значения асимметрии обнаружены для частиц, состоящих из легких (u- и d-) кварков.
- Асимметрия зависит от сорта взаимодействующих кварков (разная для пионных и протонных пуучков). Асимметрия образования η-мезона больше, чем для π⁰ ? (тоже STAR)
- Асимметрия возрастает с ростом р Т в центральной области в реакциях с пионами (π⁻p,→πºX)
- Наблюдается пороговый эффект и скейлинг.
- Асимметрия в области фрагментации Неполяризованного пучка вблизи границы фазового объема совпадает с поляризацией эксклюзивной реакции **П**
 - **p**,→**π⁰X** 04.10.2016

- У нас есть хорошая возможность проводить прецизионные исследования при промежуточных энергиях.
- Модели на основе PQCD не работают в этой области энергий?
- Какова асимметрия для ss-bar состояний и более тяжелых состояний (ф-мезон и другие)?

- Большинство моделей не могут предсказать ненулевую асимметрию в центральной области и описать зависимость от поперечного момента рΤ
- It is very important to measure asymmetry in wide kinematic region in different channels to discriminate between different models.
- В. Мочалов, Семинар ОФВЭ ПИЯФ

Эксперимент СПАСЧАРМ – систематическое исследование спиновых эффектов

Детектор СПАСЧАРМ – многоцелевая установка с большой апертурой: - исследование десятков различных реакций в большом кинематическом диапазоне, - подавление систематических ошибок, так как исследуется зависимость от азимутального угла

04.10.2016

ЗАДАЧИ ЭКСПЕРИМЕНТА СПАСЧАРМ

- Одно-спиновые асимметрии: систематическое исследование инклюзивных, эксклюзивных и упругих реакций в рождении частиц, состоящих из легких кварков (u, d, s)
- Поляризация (выстроенность) в процессах рождения гиперонов и векторных мезонов
- Изучение зависимости от кинематических параметров (0<x_F <1, 0< p_T<3.0, 12<E_{Beam} <60 GeV), сорта частиц пучка, множественности, атомного номера с высокой точностью благодаря полному азимутальному углу и большой апертуре
- Двухспиновая асимметрия А_{LL} в рождении чармония для изучения вклада глюнов в спин протона ΔG/G(x) при больших х_F

04.10.2016

В. Мочалов, Семинар ОФВЭ ПИЯФ

Большое число реакций (диссертаций?)

N₽	particle		B/S	N⁰	Particle	N _{FV}	B/S
1	Π+	4.2·10 ⁹		20	Ŋ→ п+ п [–] п ⁰	5.3·10 ⁶	0.2
2	Π-	8.7·10 ⁹		21	ω(782) → π ⁺ π [−] π ⁰	3.5·10 ⁷	0.25
3	K +	6.7·10 ⁸		22	ω(782)→ γ π ⁰	3.8·10 ⁷	2.0
4	K⁻	9.0·10 ⁸		23	φ(1020)→ K ⁺ K [−]	4.3·10 ⁶	0.3
5	р	9.2·10 ⁷		24	ρ⁺(770)→ п⁺ п⁰	2.9·10 ⁸	6.0
6	b.	2.6·10 ⁸		25	ρ [–] (770)→ п [–] п ⁰	7.5·10 ⁸	3.0
7	n	3.2·10 ⁸		26	К ⁰ s→ п ⁰ п ⁰	1.7·10 ⁷	3.5
8	n٠	8.0·10 ⁷		27	а₀(980)→ η п ⁰	1.8·10 ⁷	9.0
9	К ^о L	1.0·10 ⁸		28	∧→рп⁻	1.4·10 ⁶	0.1
10	Π ⁰ →γγ	4.3·10 ⁹	0.1	29	$\tilde{\Lambda} \rightarrow \tilde{p} \pi^+$	1.1·10 ⁶	0.05
11	η →γγ	4.2·10 ⁸	0.5	30	$\Lambda \rightarrow n \pi^0$	1.8·10 ⁶	3.0
12	η'→ π ⁺ π [−] η	8.3·10 ⁵	0.05	31	$\tilde{\Lambda} \rightarrow \tilde{n} \pi^0$	7.7·10 ⁵	0.45
13	К ⁰ s→ п ⁺ п [−]	1.3·10 ⁷	0.3	32	Ӑ++ →рп+	9.3·10 ⁶	2.0
14	р⁰(770)→ п+ п⁻	4.2·10 ⁸	2.5	33	Δ → р. ⊔_	2.5·10 ⁷	5.5
15	K ^{0*} (892)→ K ⁺ ⊓ [−]	1.1·10 ⁸	0.7	34	Ξ ⁻ → Λ π ⁻	1.9·10 ⁶	0.1
16	Ќ ⁰*(892)→ К [–] п ⁺	4.3·10 ⁷	2.0	35	Ĩ=+→ Ĩ π+	1.6·10 ⁶	0.1
17	K ^{+*} (892)→ K ⁺ Π ⁰	1.9·10 ⁷	2.6	36	$\Sigma^0 \rightarrow \Lambda \gamma$	1.2·10 ⁶	0.5
18	Ќ^{−*}(892) → К [−] п ⁰	3.8·10 ⁷	1.3	37	Σ⁰(1385) → Λ π ⁰	3.9·10 ⁶	0.2
19	ω(782)→ e+ e−	1.7·10 ⁵	0.5	38	ρ⁰(770)→ μ+ μ−	9.7·10 ⁴	0.7

СТАТИСТИКА С ИСПОЛЬЗОВАНИЕМ ПИ- ПУЧКА

СТАТИСТИКА С ИСПОЛЬЗОВАНИЕМ КАОННОГО И АНТИПРОТОННОГО ПУЧКА

Nº	particle	N _{EV}	B/S	Nº	particle	N _{EV}	B/S
1	п+	6.7·10 ⁸		13	ρ [–] (770)→ π [–] π ⁰	7.5·10 ⁷	3.8
2	Π-	8.9·10 ⁸		14	η'→ γγ	7.3·10 ⁵	6.0
3	K+	8.9·10 ⁷		15	φ(1020)→ K ⁺ K [−]	1.0·10 ⁷	0.05
4	K-	4.0·10 ⁸		16	K ^{0*} (892)→ K ⁺ π [−]	1.3·10 ⁷	1.2
5	р	6.8·10 ⁷		17	К̃ ^{0*} (892)→ К [–] п ⁺	6.6·10 ⁷	0.8
6	р.	3.7·10 ⁷		18	K ^{-*} (892) → K ⁻ π ⁰	3.4.107	2.2
7	n	6.2·10 ⁷		19	Ξ ⁻ → Λ π ⁻	2.5·10 ⁶	0.02
8	п⁰→үү	4.2·10 ⁸	0.13	20	Л→рп⁻	1.8·10 ⁶	0.02
9	η→γγ	2.5·10 ⁷	0.8	21	Ñ→ p̈́п⁺	2.9·10 ⁵	0.08
10	К ⁰ s→ п+ п ⁻	2.2·10 ⁷	0.25	22	$\Lambda \rightarrow n \pi^0$	4.0·10 ⁵	0.6
11	ρ⁰(770)→ π ⁺ π [−]	6.8·10 ⁷	2.7	23	Σ ⁻ → n π ⁻	3.1·10 ⁶	5.0
12	К ⁰ s→ п ⁰ п ⁰	4.2·10 ⁶	1.1				
Nº	частица	N _{EV}	S/B	N⁰	частица	N _{EV}	S/B
1	π+	2.1·10 ⁸		7	n	1.6·10 ⁷	
2	π-	2.6·10 ⁸		8	ñ	1.4-10 ⁸	
3	K⁺	1.7·10 ⁷		9	Λ → pỉ π	2.1·10 ⁶	10
4	K⁻	2.2·10 ⁷		10	Λ → ñπt	1.1.10 ⁶	0.13
5	р	1.6·10 ⁷		11	Δ →piπ	4.2·10 ⁷	0.14
6	pì	1.8-10 ⁸		12	$\Xi^{\scriptscriptstyle -} \to \Lambda \pi^{\scriptscriptstyle -}$	1.0·10 ⁵	10

СТАТИСТИКА С ИСПОЛЬЗОВАНИЕМ ПРОТОННОГО ПУЧКА (50 ГЭВ)

Nº	particle	N _{EV}	B/S	N⁰	particle	N _{EV}	B/S
1	п+	6.1·10 ⁹		17	ρ⁺(770)→ п⁺ п ⁰	3.0·10 ⁸	2.5
2	п-	3.6·10 ⁹		18	ρ [–] (770)→ п [–] п ⁰	1.5·10 ⁸	3.2
3	K+	5.5·10 ⁸		19	а₀(980)→ η п ⁰	5.7·10 ⁶	0.8
4	K-	2.5·10 ⁸		20	$\eta \rightarrow \pi^+ \pi^- \pi^0$	7.8·10 ⁶	0.25
5	р	4.7·10 ⁹		21	ω(782) → π ⁺ π [−] π ⁰	3.0·10 ⁷	0.7
6	b.	2.3·10 ⁶		22	K ^{+*} (892)→ K ⁺ π ⁰	3.4·10 ⁷	3.5
7	n	3.5·10 ⁹		23	Ќ [–] *(892)→ К [–] п ⁰	9.7·10 ⁶	1.4
8	n۰	2.5·10 ⁶		24	ω(782)→ γ π ⁰	7.8[.]10 ⁶	0.4
9	п ⁰ →үү	2.5·10 ⁹	0.11	25	Л→рп⁻	2.3·10 ⁷	0.1
10	η→γγ	1.3·10 ⁸	0.4	26	$\Lambda \rightarrow n \pi^0$	2.1·10 ⁷	1.5
11	φ(1020)→ K ⁺ K [−]	3.7·10 ⁶	0.04	27	$\Delta^{++} ightarrow$ р п ⁺	1.0.10 9	1.7
12	Ξ [−] → Λ π [−]	3.5·10 ⁷	0.02	28	Ξ [−] → Λ π [−]	3.5·10 ⁷	0.12
13	К ⁰ s→ п+ п ⁻	6.7·10 ⁷	1.1	29	$\Sigma^0 \rightarrow \Lambda \gamma$	3.5·10 ⁷	4.0
14	ρ⁰(770)→ π ⁺ π [−]	3.6·10 ⁸	2.7	30	Σ⁰(1385)→ Λ п ⁰	9.8·10 ⁷	1.3
15	K⁰*(892)→ K+ π [−]	5.8·10 ⁷	1.3	31	ω(782)→ e ⁺ e [−]	2.0 · 10 ⁵	0.25
16	К̃ ^{0*} (892)→ К [–] п ⁺	3.1·10 ⁷	0.8	32	ρ⁰(770)→ μ+ μ−	1.0·10 ⁵	0.25

04.10.2016

МОДЕЛИРОВАНИЕ ОБРАЗОВАНИЯ ЧАСТИЦ

 Ошибки измерения односпиновой асимметрии в реакциях

π-р,→ ω(782)Х, ρХ, η'(958)Х составят 0.3÷3% для различных кинематических интервалов

 Ожидаемая точность измерений в реакции πp↑→ f₂(1270) Х будет еще лучше (0.1÷1%)

04.10.2016

ИЗУЧЕНИЕ ЭКСКЛЮЗИВНЫХ РЕАКЦИЙ

- Измерение в эксклюзивных реакциях с регистрацией заряженных частиц. На установке ПРОЗА в нескольких реакциях с фотонами в конечном состоянии получены значительные асимметрии, доходящие до 30-40%, и осцилляции.
- Ожидается увеличение статистики примерно на порядок в реакциях $\pi^{-}p_{\uparrow} \rightarrow \omega(782)n$ и $\pi^{-}p_{\uparrow} \rightarrow \eta'(958)n$, а также в 3-4 раза в реакциях $\pi^{-}p_{\uparrow} \rightarrow f_2(1270)n$ и $\pi^{-}p_{\uparrow} \rightarrow a_2(1320)n$.
- Впервые будет измерена асимметрия в реакции π⁻p_↑→ a₀(980)n, когда a₀(980) распадается на η(550) и π⁰.(ожидается эффект более 50%).
- Данные по эксклюзивным реакциям будут набираться параллельно с данными по инклюзивным реакциям.

ПРЕДСКАЗАНИЯ В МОДЕЛИ ЭФФЕКТИВНОГО ЦВЕТОВОГО ПОЛЯ

04.10.2016

ПРЕДСКАЗАНИЯ ПОЛЯРИЗАЦИИ Л - ГИПЕРОНОВ В РР, И РА-СТОЛКНОВЕНИЯХ

04.10.2016

ФИЗИЧЕСКАЯ ПРОГРАММА ЭТАПА 2

- Этап 2 по исследованию чармония с (не)поляризованными пучками и неполяризованной мишенью:
 - Односпиновая асимметрия A_N инклюзивного рождения J/ψ и χ₁/χ₂ на пучке поляризованных протонов. Ожидаемая статистика за 40 дней набора данных:
 - Статистическая точность измерения асимметрии *J/Y* 7%
 - Измерение соотношения сечений рождения χ_1/χ_2 для определения механизма рождения чармноия на пучках протонов и пионов.
- Этап 2 с поляризованными пучками и мишенью:
 - Измерение двухспиновой асимметрии А_{LL} для изучения ∆G/G(x).
 - Измерение A_{NN} образования пар Drell-Yan для изучения трансверсити h(x). Одновременно исследование A_{NN} и A_N рождения J/ψ, χ₁/χ₂.

Двухспиновые эффекты в различных реакциях
 04.10.2016
 В. Мочалов, Семинар ОФВЭ ПИЯФ

ГОТОВНОСТЬ ОСНОВНЫХ УЗЛОВ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ - 1

- Поляризованная мишень ОИЯИ настройка магнита поляризованной мишени для улучшения однородности магнитного поля
- Охранная система готова к работе
- Идентификация частиц
 - Черенковские счетчики готовы к работе.
 - Годоскопы множественности (и TOF) идут методические работы, возможно использование плоскости, подготовленной для эксперимента ЭПИКУР.
- Пучковые детекторы:
 - Три сцинтилляционных детектора, волоконный годоскоп запуск в марте 2017 г., возможно использование камер ИТЭФ-ПИЯФ (подготовленных для ЭПИКУР).

ГОТОВНОСТЬ ОСНОВНЫХ УЗЛОВ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ - 2

04.10.2016

СИСТЕМА ДРЕЙФОВЫХ КАМЕР

4 станции дрейфовых трубок диаметром 3 см. изготовлены, 3 из них запущены, одна — запуск в ноябре 2016 г. Одна станция трубок диаметром 1.5 см — готовится прототип Обсуждается использование камер ИТЭФ-ПИЯФ, подготовленных для ЭПИКУР.

ПРИМЕР ПРОФИЛЯ С КАМЕР

СИСТЕМА СБОРА ДАННЫХ

- Новая система сбора данных с параллельным считыванием крейтов:
- крейт с новыми АЦП (на рисунке) – 6-20 мсек/событие
- 2 крейта с новыми ВЦП (30-50 мсек/событие)
- новые регистры для пучковых годоскопов и пересчетки
- Достигнуто на сегодня 10000 событий/0.8 сек

Ожидаемые значения – до 50 kEv/цикл (фактор 2.5 –цикл длиной 2 сек., фактор 2 – улучшение работы АЦП)

ТЕКУЩИЕ ПЛАНЫ РАБОТ 2016-2017

- 2016 осень настройка дрейфовой станции номер 5, настройка магнита поляризованной мишени, пробный набор с «пионами» (без черенковских счетчиков): измерение односпиновой асимметрии h+, h-, ρ (770), ω (782), η' (958), f₀(980), a₀(980), f₂(1270).omega, delta isobars
- 2017 весна исследование прототипа камеры 1 (диаметром 1.5 см), полный набор данных с «пионми»
- 2017 осень добавление одного черенковского счетчика для исследования каонов, включая ф-мезон
- 2017-2019 Подготовка канала поляризованных частиц
- 2020 перенос экспериментальной установки на канал 24

Возможность создания поляризованного пучка протонов и антипротонов

- В настоящее время в ИФВЭ серьезно рассматривается вопрос о создании вторичных пучков в канале 24 от пучка, выведенного на внешнюю мишень (до 2.10¹³ р/цикл.)
 - 24А канал поляризованных частиц (поляризованные протоны и антипротоны, неполяризованные адроны и электроны)
 - 24В пучки адронов и электронов

Размещение канала 24 в зале 1БВ

04.10.2016

Мишенная станция

Схема мишенной станции каналов 24А и 24Б. Т – мишень, МТ1÷МТ3 – дипольные магниты, МС – магниты-корректоры, Dump поглотитель. Приведенный на схеме мишенной станции вариант наведения протонного пучка на мишень соответствует отбору нейтральных вторичных частиц в канал 24А и положительно (отрицательно) заряженных частиц в канал 24Б. Пунктирными линиями показаны траектории вторичных заряженных частиц, отбираемых с канал 24В с ненулевыми углами рождения в мишени.

20.09.2012

V. Mochalov, SPIN-2012, IHEP spin program

ОПТИЧЕСКАЯ СХЕМА КАНАЛА 24А

Базовая оптическая схема канала 24А пучков ротонов и антипротонов от распада ((А)-гиперонов. О-квадрупольные и в собрание и страна (С)-коканиматоры; МСС-ималанитыой котоновные собрание и собрание и собрана и собрание и собрание

Параметры пучка поляризованных протонов в конце канала.

04.10.2016

Зависимость интенсивности и фонов протонного и антипротонного пучков

Возможности повышения интенсивности антипротонного пучка

- использование мишени, помещенной внутри магнита МТЗ таким образом, чтобы ее центр находился на расстоянии ~0.7 м от входного торца МТЗ
- использование в качестве МТЗ сверхпроводящего магнита длиной 1 м с полем 4.5÷5.0 Тл.

Система измерения поляризации • 7 двух-координатных годоскопов для настройки пучка, измерения поляризации (в районе промежуточного фокуса) и импульса пучковых частиц (особенно важно для антипротонного пучка)

 2 или 3 пороговых черенковских счетчика для подавления фона от пионов

04.10.2016

План работ по 24 каналу.

- Проект канала и установки на канале 24 готовы, готовятся рабочие чертежи, большинство элементов есть в наличии
- Проект магнита мишени готов, ведутся переговоры с возможными
 - изготовителями
- Финансирование ожидается с 2018 г. (ФЦП)

Сотрудничество СПАСЧАРМ

- ИФВЭ основной состав исполнителей (несколько отделов)
- ОИЯИ поляризованная мишень, интерпретация данных (Теор. отдел)
- МИФИ участие в сеансах и обработке данных, электроника для GEM, создание поляризованного пучка, системы измерения поляризации
- Пражский Университет, Университет Триеста исследования с поляризованным пучком
- ИТЭФ обсуждается использование в эксперименте оборудования ЭПИКУРа

Возможности сотрудничества ИФВЭ и ПИЯФ

- Участие в экспериментальных исследованиях с использованием аппаратуры ЭПИКУРа
- Участие в обработке данных
 - Новое программное обеспечение основано на FAIRRoot (AliceRoot)
- Привлечение студентов и аспирантов для участия в исследованиях

Заключение

- В ИФВЭ начинается эксперимент по систематическому исследованию поляризационных явлений сильного взаимодействия в десятках реакций в широкой кинематической области.
- Важным элементом исследований представляется создание пучка поляризованных протонов и антипротонов.

Backup slides

Модели, объясняющие поперечные спиновые эффекты

- Основные модели, объясняющие возникновение поперечной односпиновой асимметрии
- Спин-зависящая поперечная Функция фрагментации (Эффект Коллинза)

$$D_{h/q^{\uparrow}}(z,p_{\perp}) = D_{h/q}(z,p_{\perp}) + \frac{1}{2}\Delta^{N}D_{h/q^{\uparrow}}(z,p_{\perp})S_{q}$$

- Функция распределения партонов внутри поперечно поляризованного протона (Функция Сиверса)
 - Причина возникновения не обсуждается, например орбитальный момент

$$f_{q/p^{\uparrow}}(x,\mathbf{k}_{\perp}) = f_{q/p}(x,\mathbf{k}_{\perp}) + \frac{1}{2}\Delta^{N}f_{q/p^{\uparrow}}(x,\mathbf{k}_{\perp}) \mathbf{S}_{\mathbf{T}} \cdot (\hat{\mathbf{P}})$$

- Вклад высших (Twist-3) диаграмм (Qiu-Sterman, Efremo, Koike)
 - Данные вычисления связаны с функцией Сиверса
- Комбинация разных эффектов

IHEP/1968 -1977 HERA Collaboration (France-USSR)

ON HIGH ENERGY ON HIGH ENERGY OUT ON HIGH ENERGY OU

- Polarization antiparticles
- Pomeron ma experimental
- Polarization in antiparticle is in general, as [S.M. Bilenky
- The energy v of particles ar
- Spin rotation Yang model c
- Chirality cons

PROZA – answers and questions exclusive

- Essential polarization (asymmetry) was found in all reactions
- There is indication on asymmetry oscillations
- There is a minimum at "crossover" effect region in π⁻p_↑→π⁰n
 Polarization changes sign in the dip region in the disserential crossection
- Simple Regge model can not describe polarization modification required:
 - U matrix with pomeron spin-flip
 - Odderon pole is required in addition to p-pole
 - Prediction: P(π⁰)+2P(η)=P(η')
 - $a_0(980)$ see Achasov.

- Does the asymmetry magnitude increase with meson mass?
- Is it real effect for all particles? Better accuracy is required.
- Is it valid for other reactions?
- What is theoretical explanation of this effect?
- How we can discriminate between models?
- There is no predictions for the most of the reactions except π^{-} $p_{\uparrow} \rightarrow \pi^{0}n$ and:
- It is very interesting to measure these processes with good accuracy.

ФИЗИЧЕСКОЕ ОБОСНОВАНИЕ ИССЛЕДОВАНИЙ НА ПЕРВОМ ЭТАПЕ (ОДНОСПИНОВЫЕ ЭФФЕКТЫ)

- Происхождение односпиновых асимметрий в адронных реакциях не ясно.
 Тем не менее, в современных феноменологических моделях есть отдельные успехи описания спиновых эффектов в непертурбативной области КХД..
 - Модели Сиверса и Коллинза.
 - В киральной кварковой модели Трошина-Тюрина описывается качественное поведение односпиновой асимметрии инклюзивных пионов и поляризации гиперонов в столкновениях неполяризованных адронов.
 - В модели эффективного цветового поля с использованием заметного числа параметров удалось описать асимметрию в нескольких десятках реакций, а также поляризацию гиперонов, антигиперонов и выстроенность (поляризация) векторных мезонов

ФИЗИЧЕСКИЕ ЗАДАЧИ ЭКСПЕРИМЕНТА С ПОЛЯРИЗОВАННОЙ МИШЕНЬЮ

- Детальное исследование различных поляризационных эффектов в инклюзивных процессах образования частиц и резонансов, состоящих из легких u, d и s-кварков.
- Основной задачей проекта на первом этапе является детальное исследование поляризационных эффектов в инклюзивных процессах. Эксперименты с использованием мезонных пучков обнаружили отличную от нуля односпиновую асимметрию, как в центральной области, так и в области фрагментации пучка. Значительные эффекты можно ожидать вблизи границы фазового объема.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

- Разнообразие типов пучков, конечных состояний и наличие нескольких измеряемых односпиновых наблюдаемых позволяют провести глобальное исследование.
- Анализ этих данных дает возможность выявить закономерности поведения односпиновых наблюдаемых от аромата участвующих в реакции кварков, спиновой структуры адронов, содержащих эти кварки и кинематических переменных.
 - Сравнение с моделями всей совокупности данных может позволить сделать важный шаг в определении механизма поляризационных явлений и природе таких явлений, как конфайнмент, фрагментация кварков и спонтанное нарушение киральной симметрии.

FODS – EXPERIMENT: SINGLE SPIN ASYMMETRY OF CHARGE PARTICLES USING POLARIZED PROTON BEAM

	Value	
Primary Beam Intensity, p/cycle	1013	
Beam Intensity	3x10 ⁷	
Polarization	39 ± 2% (theoretical)	
Momentum	40 GeV	
Δ Ρ/Ρ	4.5% (theoretical)	
Beam dimensions at the tar	get region	
σ (X)	10.6 mm	
σ (Y)	8.1 mm	
Θ (X)	± 6.5 mrad	
Θ (Υ)	± 6.0 mrad	
п - contamonation	0.8%	

PROGRAM

МАГНИТ МИШЕННОЙ СТАНЦИИ

Схема поперечного сечения магнита МТЗ. Все размеры приведены в см

ПАРАМЕТРЫ ПРОТОННОГО ПУЧКА В ПРОМЕЖУТОЧНОМ ИЗОБРАЖЕНИИ

Центральный импульс пучка, ГэВ/с			15	30	45	
Центральный импульс пучка, ГэВ/с	15	30	45			
Размер эффективного источника протонов в вертикальной плоскости (σ _y), мм	13.8	10.0	8.5			
Коэффициент увеличения (у/у _о) для центрального импульса пучка	1.40	2.00	2.40			
Размер пучка протонов в вертикальной плоскости (σ _у), мм	20.6 (22.1)	20.9 (21.9)	21.2 (21.7)	13.8	10.0	8.5
Размер пучка протонов в горизонтальной плоскости (σ _x), мм	10.0 (32.2)	7.7 (37.0)	6.6 (35.0)	_0.0	_0.0	
Центральный импульс пучка, ГэВ/с	15	30	45			
Размер эффективного источника протонов в вертикальной плоскости (σ _y), мм	13.8	10.0	8.5			
Коэффициент увеличения (у/у _о) для центрального импульса пучка	1.40	2.00	2.40			
Размер пучка протонов в вертикальной плоскости (σ _у), мм	20.6 (22.1)	20.9 (21.9)	21.2 (21.7)	1.40	2.00	2.40
Размер пучка протонов в горизонтальной плоскости (σ _x), мм	10.0 (32.2)	7.7 (37.0)	6.6 (35.0)	2110		
Центральный импульс пучка, ГэВ/с	15	30	45			
Размер эффективного источника протонов в вертикальной плоскости (σ _y), мм	13.8	10.0	8.5			
Коэффициент увеличения (у/у _о) для центрального импульса пучка	1.40	2.00	2.40			
Размер пучка протонов в вертикальной плоскости (σ _у), мм	20.6 (22.1)	20.9 (21.9)	21.2 (21.7)	20.6 (22.1)	20.9 (21.9)	21.2 (21.7)
Размер пучка протонов в горизонтальной плоскости (σ _x), мм	10.0 (32.2)	7.7 (37.0)	6.6 (35.0)			
Центральный импульс пучка, ГэВ/с	15	30	45			
Размер эффективного источника протонов в вертикальной плоскости (σ _y), мм	13.8	10.0	8.5			
Коэффициент увеличения (у/у _о) для центрального импульса пучка	1.40	2.00	2.40			
Размер пучка протонов в вертикальной плоскости (σ _у), мм	20.6 (22.1)	20.9 (21.9)	21.2 (21.7)	10.0 (32.2)	7.7 (37.0)	6.6 (35.0)
Размер пучка протонов в горизонтальной плоскости (σ _x), мм	10.0 (32.2)	7.7 (37.0)	6.6 (35.0)			

Система измерения поляризации

Центральный импульс пучка (р), ГэВ/с	15	45	15	45
Размеры пучка ($\sigma_{\mathrm{x}} imes \sigma_{\mathrm{y}}$), мм	9.6 × 8.1	2.8 × 1.6		
Расходимость пучка ($\sigma_{\mathbf{x}^{'}} imes \sigma_{\mathbf{v}^{'}}$),	0.50 imes 0.57	$\textbf{0.13} \times \textbf{0.24}$		
мрад				
Потери частиц, %	16	13		
Центральный импульс пучка (р),	15	45		
ГЭВ/С Размеры пучка (σ _х × σ _у), мм	9.6 × 8.1	2.8 × 1.6	06 2 2 1	28~16
Расходимость пучка ($\sigma_{\mathbf{x}'} imes \sigma_{\mathbf{y}'}$),	0.50×0.57	0.13 × 0.24	3.0 × 0.1	
мрад Потери частиц, %	16	13		
Центральный импульс пучка (р).	15	45		
ГэВ/с			0.50×0.57	0.13×0.24
Размеры пучка (σ _х × σ _у), мм	9.6 × 8.1	2.8 × 1.6		
Расходимость пучка ($\sigma_{\mathbf{x}^{'}} imes \sigma_{\mathbf{v}^{'}}$),	$\textbf{0.50} \times \textbf{0.57}$	$\textbf{0.13} \times \textbf{0.24}$		
мрад				
Потери частиц, %	16	13		
Потери частиц, %			16	13

04.10.2016

SPIN FLIPPER (SHATUNOV TALK) 2 Helical magnets:

 B_{max} = 47 kGs; λ = 2.5 m

Correctors:L=30 cm; B= 23 kGs;

tilt = ± 0.1 rad;

Total length 6.5 m Flipper optics: practically is equal to empty straight 6.5 m; Spin transparency \approx 97%

