

PANDA experiment at FAIR

С.Белостоцкий

Семинар ОФВЭ 18.10.2016

FAIR Facility for Antiproton and Ion Research

The High Energy Storage Ring HESR

M. Steck. FAIR-GSI Antiproton Source Meeting. Ferrara. 15-16 December 2006

HESR ANTI PROTONS

Momentum range 1.5 -8.9 Gev L= $2x10^{31}$ cm⁻²s⁻¹ $\Delta p/p=5x10^{-5}$

at 5 GeV ΔE=250 KeV !!

Momentum range 1.5 - 15 GeV L= $2x10^{32}$ cm⁻²s⁻¹ $\Delta p/p=5x10^{-4}$

High resolution mode of HESR

- Stochastic and electron cooling of beam for p < 8.9 GeV/c
- Momentum resolution: ∆p/p ≤ 4x10⁻⁵
- Peak luminosity: 10³¹ cm⁻² s⁻¹

Precise measurement of masses and widths of resonances

 only dependent on beam momentum resolution

 \rightarrow unique at PANDA

PANDA Physics in General

<u>Charmonium Spectroscopy</u>. A precise measurement of all states below and above the open charm threshold. All charmonium states can be formed directly in annihilation in the invariant mass range GeV;

Search for Gluonic Excitations. i.e., hadrons consisting of **pure glue** and **hybrids**, which consist of a qqbar pair and excited glue. These objects may have exotic quantum numbers $J^{PC,.}$ Exploration of *X*, *Y*, and *Z* (cc-like) states, multi-quarks, quark molecules, etc.

<u>Electromagnetic Processes</u>. Study of proton form factors in the time-like region up to 14 (GeV)². $\overline{p}p \rightarrow e^+e^-$, $\overline{p}p \rightarrow e^+e^-\pi$

Study of Hadrons in Nuclear Matter. So far, experiments have been focused on the light quark sector. The high-intensity antiproton beam of up to 15 GeV/c will allow an extension of this program to the charm sector both for hadrons with hidden and open charm.

<u>Hyperon Physics.</u> Efficient production of hypernuclei with **more than one strange hadron**. Measurement of the cross sections and polarization parameters in exclusive reactions like $\bar{p}p \rightarrow \bar{A}A$, $\bar{p}p \rightarrow \bar{\Xi}\Xi$, $\bar{p}p \rightarrow \bar{\Omega}\Omega$, $\bar{p}p \rightarrow \bar{A}_cA_c$

Of particular interest is the study of production of multi-strange and charm baryons.

PANDA Collaboration, Physics Performance Report

Example X(3872)

HESR: average luminosity 1170 nb⁻¹/d (MSV0-3, no RESR)

- PANDA: estimate of cross section:
 - $\sigma(\text{pbar p } \ \text{->} \ X(3872))$ = 100nb i.e. 1.17x10⁵ X(3872) produced per day X(3872) -> J/ $\psi \rho^{0} \ \text{->} e^{+}e^{-}/\mu^{+}\mu^{-} \ \pi^{+}\pi^{-}$ only:
 - statistics: ~120 reconstructed events per day (full simulation) with RESR: factor 10 more
 - precise measurement of width/line shape by energy scan ~100keV, decisive for 4 quark states
- BELLE II:

estimated statistics: 1500 events in 4 years

• BES III:

statistics: ~20 events in 4 weeks

PANDA: ~120 X(3872)/day, 820 Y(4260)/day, 180 Z(3900)/day

PANDA is a X,Y,Z factory high statistics X,Y,Z data sample

PANDA Release Note RN-QCD-2016-002, QWG 2016

Sept. 13th 2016: FAIR got the formal approval to start going to the market for inquiry, award and execution of civil works contracts

PANDA Phases

PANDA Collaboration

More than 520 physicists from 70 institutions in 19 countries						
	*		۲			
Aligarh Muslim University	Karnatak U, Dharwad	Jülich CHP	PNPI St. Petersburg			
U Basel	TU Dresden	Saha INP, Kolkata	U of Sidney			
IHEP Beijing	JINR Dubna	U Katowice	U of Silesia			
U Bochum	U Edinburgh	IMP Lanzhou	U Stockholm			
Magadh U, Bodh Gaya	U Erlangen	INFN Legnaro	KTH Stockholm			
BARC Mumbai	NWU Evanston	U Lund	Suranree University			
IIT Bombay	U & INFN Ferrara	U Mainz	South Gujarat U, Surat			
U Bonn í	FIAS Frankfurt	U Minsk	U & INFN Torino			
IFIN-HH Bucharest	LNF-INFN Frascati	ITEP Moscow	Politecnico di Torino			
U & INFN Brescia	U & INFN Genova	MPEI Moscow	U & INFN Trieste			
U & INFN Catania	U Glasgow	U Münster	U Tübingen			
NIT Chandigarh	U Gießen	BINP Novosibirsk	TSL Uppsala			
AGH UST Cracow	Birla IT&S, Goa	Novosibirsk State U	U Uppsala			
JU Cracow	KVI Groningen	IPN Orsay	U Valencia			
U Cracow	Sadar Patel U, Gujart	U & INFN Pavia	SMI Vienna			
IFJ PAN Cracow	Gauhati U, Guwahati	Charles U, Prague	SINS Warsaw			
GSI Darmstadt	IIT Guwahati	Czech TU Praque	TU Warsaw			
	IIT Indore	IHEP Protvino				

PANDA detector

- 100 KeV mass resolution by beam momentum scan
- □1% produced particle momentum resolution
- □ 2x10⁷ s⁻¹ event rate capability
- □stand 10³² cm⁻² s⁻¹ inst. luminosity
- Inearly 4π acceptance, high detection efficiency
- Secondary vertex reconstruction for D, K^0_{S} , Λ (c τ = 317 µm for D[±])
- **□PID** (γ, e, μ, π, K, p)
- □photon detection 1 MeV 10 GeV

Figure 2.1: Artistic view of the PANDA Detector

Targets: pellet H(D) target

frozen drops of 25-40µm, controlled position; Target station for hyper-nucleus physics; Wire targets for pbar-A interaction

Total integrated luminosity about 1.5 fb-1/year

PANDA startup/ full configuration detector

Forward TOF wall functions

 PID of forward emitted particles using time-of-flight information: protons < 4.5 GeV, kaons < 3.5 GeV, pions < 3. GeV where forward RICH is not effective

> time resolution of 50-100 ps required FS momentum resolution 0.01 ΔI_{track} ~ 2-3 mm (10 ps)

• Event start stamp reference time $\rightarrow T_0$

with RICH identification $\Delta T_0 = 100 \text{ ps}$ without any PID for MI particles $\Delta T_0 \approx \text{ few ns}$

Possibility to use Λbar for detector calibration

very high Abar detection efficiency

• Can be used as start for determination of the drift time in DCs

Forward TOF wall configuration

Bicron 408

(recommended for large TOF counters)Rise time0.9 nsDecay time2.1 ns1/e light attenuation length210cm

 Fast
 PMTs (hamamtsu)

 R4998 1" (R9800) , R2083 2" (R9779)

 Anode pulse rise time
 0.7-1.8ns

 TTS
 250-370ps (FWHM)

 Gain
 1.1-5.7x10⁶

Prototyping / PMT characteristics

PMT	Photocathode diameter	Anode pulse rise	Electron transition	Transition time spread	Gain / 10 ⁶	Typical voltage
	(mm)	time (ns)	time (ns)	(ps)		(V)
R4998	25 (1 inch)	0.7	10	160	5.7	2250
R9800	25 (1 inch)	1.	11	270	1.1	1300
R2083	51 (2 inch)	0.7	16	370	2.5	3000
R9779	51 (2 inch)	1.8	20	250	0.5	1500
XP2020	51 (2 inch)	1.6	28	??	30	2000

Prototyping at test station

cc1.

After offline am correctio	ons	
PMT_1	σ_{TDC_1} (ps)	σ_{PMT} (ps)
R4998 (4998/4998)	72.	63.7
R9800 (4998/9800)	86.	79.2
R2083 (2083/2083)	72.6	64.4
R9779 (2083/9779)	64	54.5
XP2020 (2.5, 2.36kV)	82	74.8

2 MeV energy deposition, 2x10⁴ photons Track walk in scintillator $\sigma_{tr.w.} = 15 \text{ ps}$ Electronics contribution $\sigma_{el} = 30 \text{ ps}$

After corrections for electronics and track walk

SiPM timing tests

Variant A

Amplitude correction $\Delta t = \Delta t_0 - a(\frac{1}{\sqrt{q_1}} - \frac{1}{\sqrt{q_2}}) - b$

variant A S10931 after corrections $\sigma = 103 \text{ ps}$

variant B KETEK 6660 after corrections $\sigma = 65 \text{ ps}$

Supply voltage (V)	Signal amplitude (mV)	Noise amplitude (mV)	Current without ⁹⁰ Sr	Current with ⁹⁰ Sr	σ _{TDC_1} (ps)	$\frac{\sigma_{\text{TDC}_1}}{\sqrt{2}}$	σ _{KETEK} (ps)
26.35	20÷30	~ 0.3	(mkA) 7.5	(mkA) 9	120	(ps) 84.8	81.1
26.85	70÷90	~ 0.5	11	13	100	70.7	66.1

Table 4. Main parameters and time resolution of KETEK 6660.

Readout electronics

□ In prototyping, available at home electronics (LEDs, TDCs,QDCs) used

□ In real experiment, PPGA standard based on TRB-3 and Padiwa 2(3) developed in GSI planned:

- -TRB 256 channel programmable TDC;
- Padiwa 8/16 channel discriminator
- for amplitude correction TOT principle used

<u>Test results</u>

Measured

- TRB+PADIWA resolution with pulser 25-30 ps
- With KETEK's -112 ps
- Dependency of TRB on temperature
 - With pulser --shift 10 ps
 - With KETEK's shift 100 ps

Online TOF calibration

Beam tests at 1 GeV PNPI SC

Beam tests using 920 MeV protons (summary)

scintillation slab dimensions (cm)	PMT	timing resolution σ (ps)	comment
140 × 10 × 2.5	Hamamatsu R2083 (both ends)	70 (64.4 ⁹⁰ Sr)	RecommendedforaprototypefortheFTOFwall.
140 × 5 × 2.5	Hamamatsu R4998 (both ends)	67 (63.7 ⁹⁰ Sr)	Recommended for a prototype for the FTOF wall
140 × 2.5 × 2.5	Hamamatsu R4998 (both ends)	55	a variant of a prototype with smaller stintillator width
140× 5 × 1.5	Hamamatsu R4998 (both ends)	≈ 90	projected originally for the FTOF wall
$140 \times 2.5 \times 2.5$	Electron PMT 187 (both ends)	80	magnetic field protected,

MC studies. FTOF wall particle ID

MC studies. Abar detection with FTOF

$$p + p \rightarrow \Lambda + X \quad \Lambda \rightarrow p + \pi^+$$

 $0.72 \times 10^6 \ pp$ interactions, 10 GeV

 $\overline{\Lambda}$ detected with high efficiency (20%) at weak selection criteria $N_{\Lambda} / N_{\overline{\Lambda}}$; 1/40 Λ events also well detected

@ $10^6 s^{-1}$ target interactions (L $\approx 10^{31} s^{-1} cm^{-2}$) $N_{\overline{\Lambda}} = 4 \times 10^3 s^{-1}$!! can be used to tag exclusive reactions, e.g., $\overline{pp} \rightarrow \overline{\Lambda}\Lambda$ production 25×10^6 events / 7 days

Summary

□ MC simulation demonstrates functionality of FTOF wall:

- FTOF wall can stand to maximum count rate in central part of FTOF wall at L =10³² cm⁻² s⁻¹ Background related to e⁺e⁻ pairs production peaked at very low momenta is small;
- FTOF provides PID for forward emitted particles with momenta below 3-4 GeV;
- FTOF provides determination of event start time stamp within 100 ps
- High rate and good efficiency Abar detection with FTOF wall may be used for calibration.
- Prototyping is completed. Geometry of FTOF wall and its components is optimized.
 - Preliminary selection of photo detectors (PMTs and SiPMs) is performed using test station.
 For Hamamatsu PMTs timing resolution about 60 ps is obtained. A similar result is obtained for KETEK PM6660 (6x6 mm²) samples .
 - -Big counters (mounted on scintillation slabs of 140 cm length) has been investigated at proton beams. Thickness of the slabs is optimized.
 - Timing resolution of 70-75 ps is obtained at the PNPI SC using 920 MeV under condition that hit position is measured
 - Without hit position independent information, timing resolution better than 80 ps can be obtained by measuring T3+T4 combination.

The obtained results on FTOF design, prototyping and obtained experimentally timing resolution meet the requirements of PANDA experiment.

Supporting slides

Key experiments of the start phase

Concentration on unique and forefront physics topics

- Precise measurement of the line shape of narrow XYZ-states, e.g. X(3872) (only possible in proton–antiproton, counting experiment, clarification of the nature of the states)
- Resonant formation of the negative and uncharged partners of the Z-States
 (only possible in proton–antiproton, clarification of the nature of the states)
- Production of multi-strangeness baryons (unexplored, new territory, "Strangeness-Factory")
- Production of high spin charmonia (only possible in proton–antiproton) light mesons, baryons and production of hybrides und glueballs
- Measurement of the electromagnetic form factors of the proton in the time-like
 domain with electrons and muons in the final state

Forward TOF wall functions

- PID of forward emitted particles using time-of-flight information: protons < 4.5 GeV, kaons < 3.5 GeV, pions < 3. GeV where forward RICH is not effective time resolution of 50-100 ps required FS momentum resolution 0.01
- Event start stamp reference time
- Possibility to use Abar for detector calibration
- Can be used as start for determination of the drift time in DCs

• MC simulation.

- time dependent event reconstruction analysis ?? lack of manpower

• Related to FSTT.

- FS momentum resolution $\Delta p/p$ must be 1% -vertical hit position uncertainty? $\Delta y=1$ mm corresponds 5.3 ps (BC-408) expected at present design FSTT $\Delta y=5-10$ mm \rightarrow up to $\Delta(tof) \approx 60$ ps -uncertainty in track reconstruction? $\Delta L_{track} / L_{track} = 0.1\% \rightarrow \Delta(tof) \approx 30$ ps

• FTOF wall position behind RICH.

- RICH width is smaller than sensitive area of FTOF wall, deterioration of track information at FTOF wall side slabs

 FTOF wall width is 5.6 m while FSTT last station width is 3.9 m, thus side parts of FTOF wall are out of FSTT acceptance.

reduce FTOF wall width ??

- Hardware:
 - finalize TRB-3 readout tests
 - definitive decision on Hamamatsu PMs (type, housing, divider, price,.).
 - on-line laser calibration system (??)
 - HV-power supply: commercial or PNPI production HVDS3200

Track multiplicity/event in TOF detectors at 10 GeV

FTOF wall and barrel TOF interplay

Detection Efficiency of FTOF wall

 $0.72 \times 10^6 \ \overline{pp}$ interactions @10 GeV, $\frac{\sigma(p)}{\rho} = 0.01$, $\sigma(TOF) = 50 \ ps$ р

		Generated by DPM	Detected by FTOF wall	detection efficiency
	π^-	880346	172188	0.195
	π^+	877255	150440	0,171
	K^-	30179	5820	0.192
	K^+	26811	2863	0.107
	\overline{p}	453293	202174	0.446
Both	p	398323	51241	0.129
proton and	$\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	19874	3840	0.193
detected	$\Lambda \to p + \pi^-$	19518	≈100	$\approx 5 \cdot 10^{-3}$
with FTOF				

PMT characteristics

PMT	Photocathode	Anode	Electron	Transition	Gain /	Typical
	diameter	pulse rise	transition	time spread	106	voltage
	(mm)	time (ns)	time (ns)	(ps)		(V)
R4998	25 (1 inch)	0.7	10	160	5.7	2250
R9800	25 (1 inch)	1.	11	270	1.1	1300
R2083	51 (2 inch)	0.7	16	370	2.5	3000
R9779	51 (2 inch)	1.8	20	250	0.5	1500
XP2020	51 (2 inch)	1.6	28	??	30	2000

31

Test station results

After offline amplitude corrections

PMT_1	σ_{TDC_1} (ps)	σ_{PMT} (ps)
R4998 (4998/4998)	72.	44.4
R9800 (4998/9800)	86.	64.6
R2083 (2083/2083)	72.6	44.9
R9779 (2083/9779)	64	56.5
XP2020 (2.5, 2.36kV)	82	52,3

After corrections for electronics and track walk

Off-line time resolution

Hit position and pulse amplitude corrections

on event basis calculated are

$$\tau_{13}, \tau_{14}, \tau_{23}, \tau_{24}, \tau_{34}$$

$$\tau_{nk} = t_n - t_k - a(\frac{1}{\sqrt{q_n}} - \frac{1}{\sqrt{q_k}}) - bx - c,$$

x hit position along the scintillation slab, t_n, t_k time stamp measured with TDC, q_n, q_k measured with QDC, a,b,c free parameters to minimize τ_{nk} timing resolution is σ of (corrected) τ_{nk} distribution.

Timing resolution results from 1 GeV PNPI SC

Time resolution without hit position correction

 $\tau_3 + \tau_4 = \tau$ constant light propagation time through slab

 $T_3 = T_1 + t + \tau_3$ $T_4 = T_1 + t + \tau_4$

$$(T_3 - T_1) + (T_4 - T_1) = T_{31} + T_{41} = 2t + \tau$$

sensitive to measured time, not sensitive to hit position

$$(T_3 - T_1) - (T_4 - T_1) = T_3 - T_4 + \tau - 2\tau_4$$

sensitive to hit position, not sensitive to measured time

Time and hit position measurements using TDC information only

x	(T ₄₁ -T ₃₁)/2	σ ₄₃₁ -	(T ₄₁ +T ₃₁)/2	σ ₄₃₁ +	(T ₄₂ -T ₃₂)/2	σ ₄₃₂ -	(T ₄₂ +T ₃₂)/2	σ ₄₃₂ +
cm	ps	ps	ps	ps	ps	ps	ps	ps
60	1504	99	11950	148,5	1503,5	100,5	11580	120,5
40	2770,5	74	11865	138,5	2770,5	74,5	11510	102
20	3904	90,5	11975	145,5	3904	90,5	11630	114
0	5025	76	11920	136,5	5025	75,5	11580	103,5
-20	6255	81,5	11940	150	6255	82,5	11630	115,5
-40	7460	84	11895	143,5	6890	85	11560	112,5
-60	8655	93,5	11945	148,5	8655	93,5	11600	121

 $\tau = 59.12 \,\text{ps} / \text{cm} \times 140 \,\text{cm} = 8276.8 \,\text{ps}$

v_{BC408} = 1/59.12 = 0.17mm/ps speed of light in BC408 = 0.19 mm/ps

hit position resolution 80ps x 0.17mm/ps = 13.6 mm

Count rates in frame of DPG

Number of events selected from 100 generated PP collisions chosen arbitrarily, at 10 GeV

$\overline{p} p \rightarrow \overline{p} p$	24	$\overline{p} p \rightarrow \overline{p} p \pi^0$	5
$\overline{p} p \rightarrow \overline{n} n \pi^0$	3	$\overline{p} p \rightarrow \overline{p} n \pi^+$	3
$\overline{p} p \rightarrow \overline{p} p \pi^+ \pi^-$	2	$\overline{p} p \rightarrow \overline{n} p \pi^0 \pi^-$	2
$\overline{p} p \rightarrow \overline{p} n \pi^+ \pi^0$	2	$\overline{p} p ightarrow \overline{p} p \pi^0 \pi^+ \pi^-$	9
$\overline{p} p \rightarrow \overline{n} p \pi^0 \pi^+ \pi^- \pi^-$	4	$\overline{p} p ightarrow \overline{p} p \pi^0 \pi^+ \pi^- \pi^+ \pi^-$	4
$\overline{p} p \rightarrow \overline{\Lambda} n \overline{K}^{0} \pi^{0} \pi^{+} \pi^{-}$	1		

Hadron count rate by TOF wall at 0.35x10⁷/s interactions in target

p̄ beam momentum, GeV/c	Pion rate, 1/s	Kaon rate, 1/s	Proton rate, 1/s	Antiproton rate, 1/s
2	3.9×10 ⁵	2×10 ³	1.2×10 ⁴	1.07×10 ⁶
5	6×10 ⁵	7.8×10 ³	3.8×10 ⁴	9.5×10 ⁵
15	9.6×10 ⁵	4.7×10 ⁴	3.2×10 ⁴	8.2×10 ⁵

High rate of π^0 Bgr expected from $\pi \rightarrow 2\gamma \quad \gamma \rightarrow e^+ e^-$

Cost estimation update

FTOF wall

Plastic scintillators	
B408 20u.140x5x2.5cm+46u.140x10x2.5cm	40 k€
PMTs 1" 760 € 40u. +5u.(spare)	42
PMTs, 2" 1270 € 92u.+20u.(spare)	155
FEE+DAQ	35
HV power supply	22
Monitoring/calibration system	25
Supporting structure, mechanical items	75
Test stand for mass production	35
Transportation, custom expenses	42
	••••
	471 k€

From RRB February 2014 $470 \ k \in$

FTOF wall mechanics.

FTOF wall front view

Scintillation counter mechanical components

LIGHT GUIDES FOR 1" AND 2" PMTs

