OKCIEDUNCHIM SOX: Short baseline Oscillations BoreXino

WILD BORCALI MOUHO B CROCUUTURUU HEUMOUHO B CROCUUTURUU HEUMOUHO B DOCE COCINORHUE

ербин итут ядерной 41 визики

410

110

4

1

111

1/10

No Va

Содержание

1. Указания на существование стерильного состояния с δm²~1 эВ² LSND, MiniBooNe, Ga-аномалия, реакторная аномалия 2. Детекторы солнечных нейтрино Homestake, Kamiokande, SAGE, GALLEX/GNO, S-Kamiokande, SNO, KamLAND, BOREXINO 3. Детектор Борексино энергия, координаты события, фон 4. Результаты Борексино по солнечным нейтрино ⁷Ве-нейтрино, ⁸В-нейтрино, рер-нейтрино, СNO, рр ассиметрия день/ночь, магнитный момент 5. Регистрация антинейтрино в Борексино Гео-нейтрино, реакторные нейтрино,8В-антинейтрино 6. Искусственные источники нейтрино Нейтрино 51Cr, 39Ar, антинейтрино 90Y-90Sr, 144Ce-144Pr 7. Борексино с источником нейтрино 51Cr Рассеяние нейтрино на электроне, 10 МК ⁵¹Сг, осцилляционные кривые 8. Борексино и источник антинейтрино 144Pr КАЭС, МАЯК, 100 кК 144Се, ожидаемая чувствительность

Смешивание и осцилляции нейтрино

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{s} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ U_{s1} & U_{s2} & U_{s3} \\ U_{s1} & U_{s2} & U_{s3} \\ U_{s1} & U_{s2} & U_{s3} \\ U_{e} \end{pmatrix} = \cos \theta |\nu_{1}\rangle + \sin \theta |\nu_{2}\rangle$$

$$\frac{\Delta m_{12}^{2} = 7.5 \times 10^{-5} eV^{2}, |\Delta m_{23}^{2}| = 2.4 \times 10^{-3} eV^{2}, \\ \sin^{2} \theta_{12} = 0.308, \sin^{2} \theta_{23} = 0.446, \sin^{2} \theta_{13} = 0.0237, \\ |\nu_{e}\rangle = \cos \theta |\nu_{1}\rangle + \sin \theta |\nu_{2}\rangle$$

$$\frac{\Delta m_{12}}{|\nu_{e}\rangle} = -\sin \theta |\nu_{1}\rangle + \cos \theta |\nu_{2}\rangle, \\ P = 1 - \sin^{2} 2\theta \sin^{2} (1.27\Delta m^{2} (L/E)) \end{pmatrix}$$

$$\frac{\Delta m_{12}^{2} = -\cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21} - \sin^{2} 2\theta_{13} (\cos^{2} \theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \theta_{12} \sin^{2} \Delta_{32}) \\ \Delta m_{12}^{2} = -\cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21} - \sin^{2} 2\theta_{13} (\cos^{2} \theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \theta_{12} \sin^{2} \Delta_{32})$$

02.02.2016

Матрица РММЅ

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

2 угла смешивания и 2 Δm^2 масс измерены:

 $\begin{aligned} &\tan^2 \theta_{12} = 0.47 \pm 0.06, \ \theta_{12} = (34 \pm 2)^0, \\ &\sin^2 \theta_{23} = 0.5 \pm 0.15, \ \theta_{23} = (45 \pm 10)^0 \\ &\sin^2 \theta_{13} = 0.025 \pm 0.007, \\ &\theta_{13} = (9 \pm 3)^0 \\ &\operatorname{Im}^2_2 - \operatorname{m}^2_1 I = (7.6 \pm 0.2) \times 10^{-5} \, \mathrm{eV}^2 \\ &\operatorname{Im}^2_3 - \operatorname{m}^2_2 I = (2.3 \pm 0.2) \times 10^{-3} \, \mathrm{eV}^2 \end{aligned}$

θ_{12} и δm^2_{12} определены из экспериментов с солнечными нейтрино + KamLand

$$\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ -1/2 & 1/2 & 1/\sqrt{2}\\ 1/2 & -1/2 & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} v_1\\ v_2\\ v_3 \end{pmatrix}$$

В β-распаде три особенности на графике Кюри

В распаде п-мезона три пика в спектре мюона

0.8	0.5	0.1 \	(1	0.2	0.004	
0.5	0.6	0.7	0.2	1	0.04	
0.3	0.6	0.7	0.008	0.04	1	ig)

2011 – год нейтрино

Март: стерильное нейтрино новые вычисления спектра реакторных нейтрино R_{набл} / R_{пред} = 0.943±0.023 реакторная аномалия Июль: θ_{13} отличен от нуля T2K (Tokai to Kamioka) эксперимент $0.03(0.04) < \sin^2 2\theta_{13} < 0.28(0.34)$ at 90% C.L. Сентябрь: – сверхсветовые нейтрино CerN GranSasso OPERA $v-c/c = (2.48 \pm 0.58) \times 10^{-5}$ Апрель: LMA решение для нейтрино $A_{dn} = 0.001 \pm 0.012(stat) \pm 0.007 (syst)$ Сентябрь: рер-нейтрино (1.6±0.3)10⁸ ст⁻²s⁻¹ Borexino. **Декабрь:** θ_{13} Double Chooz $0.015 < \sin^2 2\theta_{13} < 0.16$ at 90% C.L.

Указание на существование нового массового состояния нейтрино было получено:

1. в экспериментах LSND (3.8 σ) и MiniBooNE (3.8 σ), изучавших осцилляции мюонных антинейтрино Sin²(2 θ) =(0.003-1.0) δm_{14}^2 =(0.05-100) эВ² $P = 1 - \sin^2 2\theta \sin^2 (1.27 \Delta m^2 (L/E))$

2. при калибровке Ga-Ge радиохимических детекторов с искусственными источниками нейтрино (Ga neutrino anomaly, 2.8 σ) Sin²(20) = 0.1 δm_{14}^2 = 1.5 $\Im B^2$

3. в результате новых вычислений спектра реакторных нейтрино, (2.5*σ*)

Sin²(2θ) =(0.01-0.3) δm₁₄² = 2.0 9B²

4. Космология и нуклеосинтез во время БВ предпочитали 4 типа нейтрино WMAP Neff=4.34±0.88 PLANK+WMAP Neff=3.51±0.8

Поскольку распадная ширина Z-бозона соответствует строго 3-м типам нейтрино, новое 4-е состояние интерпретируется как стерильное, не участвующее в слабых взаимодействия, нейтрино

Схема смешивания 3 + 1

ν_e

 ν_{μ}

ντ

J.Link TAUP2015

С одним стерильным нейтрино матрица PMNS становится матрицей 4х4 и появляется 4 параметра U_{α4}

Вероятность появления

$$P_{\mu e} = 4U_{e4}^2 U_{\mu 4}^2 \sin^2(1.27\Delta m_3^2 L/E)$$

Вероятность исчезновения ve

$$P_{ex} \approx P_{es} = 4U_{e4}^{2} U_{s4}^{2} \sin^{2}(1.27\Delta m_{3}^{2}L/E)$$

Вероятность исчезновения vµ
$$P_{\mu N} \approx 4U_{\mu 4}^{2} U_{s4}^{2} \sin^{2}(1.27\Delta m_{3}^{2}L/E)$$

$$= \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ U_{s1} & U_{s2} & U_{s3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

$$P_{(-) (-)} = \delta_{\alpha\beta} - 4|U_{\alpha4}|^2 \left(\delta_{\alpha\beta} - |U_{\beta4}|^2\right) \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

ΤТ

тт

$$\sin^2 2\vartheta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2$$

$$\sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 \left(1 - |U_{e4}|^2\right)$$
$$\sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu4}|^2 \left(1 - |U_{\mu4}|^2\right)$$

LSND – Liquid Scintillator Neutrino Detector

В 1995, LSND указал на возможность осцилляций с $\delta m^2 \sim 1 eV^2$, наблюдая избыток анти- v_e в пучке анти- v_{μ} . Детектор содержит 167 тонн жидкого сцинтиллятора. Энергия нейтрино DAR 20-50 МэВ. L = 30 м. Karmen – аналог

MiniBooNE- booster Neutrino Experiment FermiLab

800 тонн на расстоянии 540 метров от источника (анти) v_{μ} с энергией ~500 МэВ. МіпіВооNE (Черенков, СН2) наблюдает избыток событий, связанных с электронными (анти)нейтрино в пучке мюонных (анти) v_{μ} на уровне 3.8 σ .

Появление (анти)v_e в пучке (анти)v_µ

arXiv:1303.3011v3

Области разрешенных значений параметров δm^2 и $Sin^2 2\theta_{\mu e}$ и существующие пределы. LSND, MiniBooNE против KARMEN, NOMAD, ICARUS и E776 + LBL реакторные эксперименты. Красная область соответствует совместному фиту всех данных, звездочкой указано наиболее вероятное значение осцилляционных параметров.

02.02.2016

Нет исчезновения мюонных нейтрино arXiv:1303.3011v3

Ограничения на $\delta m_{14}^2 u \sin^2 2\theta_{\mu 4}$ из данных CDHS, атмосферных нейтрино, MiniBooNE (исчезновение), MINOS (CC и NC) и их комбинация. Красная область соответствует совместному фиту данных LSND и MiniBooNE по появлению и реакторных и Ga-данных по исчезновению. Звездочкой указано наиболее вероятное значение осцилляционных параметров. Поскольку Рµе =0.25Рµµ Рее, мюонные нейтрино должны исчезать, если е-v появляются.

Галлиевая аномалия

02.02.2016

Реакторная аномалия

02.02.2016

Проблемы спектра реакторных нейтрино

Во всех трех экспериментах избыток событий в интервале 4 – 6 МэВ для ближнего и дальнего детекторов. Не влияет на определение 013.

02.02.2016

Исчезновение электронных (анти)нейтрино

J.Kopp et al., arXiv:1303.3011

Области разрешенных осцилляционных параметров (95% у.д. в схеме 3+1). SBL реакторы – синий. GaGe-аномалия- желтый. Большие углы смешивания ограничивают данные по ve-12C взаимодействию (LSND, KARMEN), LBL реакторные (CHOOZ, Palo Verde, DCHOOZ, Daya Bay и RENO) и детекторы солнечных м + KamLanD. Красная область – суммарный фит.

02.02.2016

Сравнение экспериментов

Эксперимент	Источник нейтрино	Канал	Регистра ция	признак	У.Д.
LSND	распад остановивш ихся мюонов	v¯ _µ → v¯ _e	IBD	счет и спектр	3.8σ
Mini- BooNE	Рапад пионов в полете		CCQE	счет и спектр	3.8σ
SAGE GALLEX	⁵¹ Cr, ³⁷ Ar	$v_e \rightarrow v_s$	IEC	Счет	≈ 3.0σ
Reactor	^{235,238} U, ^{239,241} Pu	$v_e \rightarrow v_s$	IBD	счет и спектр	3.0σ

C. Giunti 1512.04758v2

Figure 1: Allowed regions in the sin² $2\vartheta_{e\mu} - \Delta m_{41}^2$, sin² $2\vartheta_{ee} - \Delta m_{41}^2$ and sin² $2\vartheta_{\mu\mu} - \Delta m_{41}^2$ planes obtained in the pragmatic 3+1 global fit PrGLO of short-baseline neutrino oscillation data compared with the 3σ allowed regions obtained from $\overset{(-)}{\nu_{\mu}} \rightarrow \overset{(-)}{\nu_{e}}$ short-baseline appearance data (APP) and the 3σ constraints obtained from $\overset{(-)}{\nu_{e}}$ short-baseline disappearance data (ν_{μ} DIS), $\overset{(-)}{\nu_{\mu}}$ short-baseline disappearance data (ν_{μ} DIS) and the combined short-baseline disappearance data (DIS). The best-fit points of the global (PrGLO) and APP fits are indicated by crosses.

Light Sterile Neutrinos: A White paper 1204.5379 (400 cit.)

Light Sterile Neutrinos: A White Paper

K. N. Abazajian^a,¹ M. A. Acero,² S. K. Agarwalla,³ A. A. Aguilar-Arevalo,² C. H. Albright,^{4,5} S. Antusch,⁶ C. A. Argüelles,⁷ A. B. Balantekin,⁸ G. Barenboim^a,³ V. Barger,⁸ P. Bernardini,⁹ F. Bezrukov,¹⁰ O. E. Bjaelde,¹¹ S. A. Bogacz,¹² N. S. Bowden,¹³ A. Boyarsky,¹⁴ A. Bravar,¹⁵ D. Bravo Berguño,¹⁶ S. J. Brice,⁵ A. D. Bross,⁵ B. Caccianiga,¹⁷ F. Cavanna,^{18, 19} E. J. Chun,²⁰ B. T. Cleveland,²¹ A. P. Collin,²² P. Coloma,¹⁶ J. M. Conrad,²³ M. Cribier,²² A. S. Cucoanes,²⁴ J. C. D'Olivo,² S. Das,²⁵ A. de Gouvêa,²⁶ A. V. Derbin,²⁷ R. Dharmapalan,²⁸ J. S. Diaz,²⁹ X. J. Ding,¹⁶ Z. Djurcic,³⁰ A. Donini,^{31,3} D. Duchesneau,³² H. Ejiri,³³ S. R. Elliott,³⁴ D. J. Ernst,³⁵ A. Esmaili,³⁶ J. J. Evans,^{37, 38} E. Fernandez-Martinez,³⁹ E. Figueroa-Feliciano,²³ B. T. Fleming^a,¹⁸ J. A. Formaggio^a,²³ D. Franco,⁴⁰ J. Gaffiot,²² R. Gandhi,⁴¹ Y. Gao,⁴² G. T. Garvey,³⁴ V. N. Gavrin,⁴³ P. Ghoshal,⁴¹ D. Gibin,⁴⁴ C. Giunti,⁴⁵ S. N. Gninenko,⁴³ V. V. Gorbachev,⁴³ D. S. Gorbunov,⁴³ R. Guenette,¹⁸ A. Guglielmi,⁴⁴ F. Halzen,^{46,8} J. Hamann,¹¹ S. Hannestad,¹¹ W. Haxton,^{47,48} K. M. Heeger,⁸ R. Henning,^{49,50} P. Hernandez,³ P. Huber^{b, 16} W. Huelsnitz,^{34, 51} A. Ianni,⁵² T. V. Ibragimova,⁴³ Y. Karadzhov,¹⁵ G. Karagiorgi,⁵³ G. Keefer,¹³ Y. D. Kim,⁵⁴ J. Kopp^a,⁵ V. N. Kornoukhov,⁵⁵ A. Kusenko,^{56,57} P. Kyberd,⁵⁸ P. Langacker,⁵⁹ Th. Lasserre^a,^{22, 40} M. Laveder,⁶⁰ A. Letourneau,²² D. Lhuillier,²² Y. F. Li,⁶¹ M. Lindner,⁶² J. M. Link^b,¹⁶ B. L. Littlejohn,⁸ P. Lombardi,¹⁷ K. Long,⁶³ J. Lopez-Pavon,⁶⁴ W. C. Louis^{a,34} L. Ludhova,¹⁷ J. D. Lykken,⁵ P. A. N. Machado,^{65,66} M. Maltoni,³¹ W. A. Mann,⁶⁷ D. Marfatia,⁶⁸ C. Mariani,^{53, 16} V. A. Matveev,^{43, 69} N. E. Mavromatos,^{70, 39} A. Melchiorri,⁷¹ D. Meloni,⁷² O. Mena,³ G. Mention,²² A. Merle,⁷³ E. Meroni,¹⁷ M. Mezzetto,⁴⁴ G. B. Mills,³⁴ D. Minic,¹⁶ L. Miramonti,¹⁷ D. Mohapatra,¹⁶ R. N. Mohapatra,⁵¹ C. Montanari,⁷⁴ Y. Mori,⁷⁵ Th. A. Mueller,⁷⁶ H. P. Mumm,⁷⁷ V. Muratova,²⁷ A. E. Nelson,⁷⁸ J. S. Nico,⁷⁷ E. Noah,¹⁵ J. Nowak,⁷⁹ O. Yu. Smirnov,⁶⁹ M. Obolensky,⁴⁰ S. Pakvasa,⁸⁰ O. Palamara,^{18,52} M. Pallavicini,⁸¹ S. Pascoli,⁸² L. Patrizii,⁸³ Z. Pavlovic,³⁴ O. L. G. Peres,³⁶ H. Pessard,³² F. Pietropaolo,⁴⁴ M. L. Pitt,¹⁶ M. Popovic,⁵ J. Pradler,⁸⁴ G. Ranucci,¹⁷ H. Ray,⁸⁵ S. Razzaque,⁸⁶ B. Rebel,⁵ R. G. H. Robertson,^{87,78} W. Rodejohann^a,⁶² S. D. Rountree,¹⁶ C. Rubbia,^{39,52} O. Ruchayskiy,³⁹ P. R. Sala,¹⁷ K. Scholberg,⁸⁸ T. Schwetz^a,⁶² M. H. Shaevitz,⁵³ M. Shaposhnikov,⁸⁹ R. Shrock,⁹⁰ S. Simone,⁹¹ M. Skorokhvatov,⁹² M. Sorel,³ A. Sousa,⁹³ D. N. Spergel,⁹⁴ J. Spitz,²³ L. Stanco,⁴⁴ I. Stancu,²⁸ A. Suzuki,⁹⁵ T. Takeuchi,¹⁶ I. Tamborra,⁹⁶ J. Tang,^{97,98} G. Testera,⁸¹ X. C. Tian,⁹⁹ A. Tonazzo,⁴⁰ C. D. Tunnell,¹⁰⁰ R. G. Van de Water,³⁴ L. Verde,¹⁰¹ E. P. Veretenkin,⁴³ C. Vignoli,⁵² M. Vivier,²² R. B. Vogelaar,¹⁶ M. O. Wascko,⁶³ J. F. Wilkerson,^{49,102} W. Winter,⁹⁷ Y. Y. Y. Wong^a,²⁵ T. T. Yanagida,⁵⁷ O. Yasuda,¹⁰³ M. Yeh,¹⁰⁴ F. Yermia,²⁴ Z. W. Yokley,¹⁶ G. P. Zeller,⁵ L. Zhan,⁶¹ and H. Zhang⁶²

¹University of California, Irvine

²⁷ Petersburg Nuclear Physics Institute Программа поиска ¹⁰⁴ Brookhaven National Laboratory Стерильного нейтрино С массой ~1 эВ²

(Dated: April 25, 2012)

arXiv:1204.5379v1 [hep-ph] 18 Apr 2012

SOX: JHEP 08 (2013) 038; arXiv:1304.7721

Published for SISSA by D Springer

RECEIVED: May 24, 2013 ACCEPTED: July 9, 2013 PUBLISHED: August 8, 2013

SOX: Short distance neutrino Oscillations with BoreXino

G. Bellini,^h D. Bick,^q G. Bonfini,^e D. Bravo,^o B. Caccianiga,^h F. Calaprice,^k A. Caminata,^c P. Cavalcante,^e A. Chavarria,^k A. Chepurnov,^p D. D'Angelo,^h S. Davini,^r A. Derbin,⁴ A. Etenko,^g G. Fernandes,^c K. Fomenko,^{b,e} D. Franco,^a C. Galbiati,^k C. Ghiano,^a M. Göger-Neff,^m A. Goretti,^k C. Hagner,^q E. Hungerford,^r Aldo Ianni,^e Andrea Ianni,^k V. Kobychev,^f D. Korablev,^b G. Korga,^r D. Krasnicky,^e D. Kryn,^a M. Laubenstein,^e J.M. Link,^o E. Litvinovich,^g F. Lombardi,^e P. Lombardi,^h L. Ludhova,^h G. Lukyanchenko,^g I. Machulin,^g S. Manecki,^o W. Maneschg,ⁱ E. Meroni,^h M. Meyer,^q L. Miramonti,^h M. Misiaszek,^d P. Mosteiro,^k V. Muratova,^l L. Oberauer,^m M. Obolensky,^a F. Ortica,^j K. Otis,ⁿ M. Pallavicini,^c E. Pantic,^s L. Papp,^o S. Perasso,^c A. Pocar,ⁿ G. Ranucci,^h A. Razeto,^e A. Re,^h A. Romani,^j N. Rossi, R. Saldanha, C. Salvo, S. Schönert, D. Semenov, H. Simgen, M. Skorokhvatov,^g O. Smirnov,^b A. Sotnikov,^b S. Sukhotin,^g Y. Suvorov,^{s,g} R. Tartaglia, G. Testera, **E. Unzhakov**, R.B. Vogelaar, H. Wang, M. Wojcik, ^d M. Wurm,^q O. Zaimidoroga,^b S. Zavatarelli,^c and G. Zuzel^d ^aAPC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, Sorbonn ^bJoint Institute for Nuclear Research, Dubna 141980, Russia ^cDipartimento di Fisica, Università e INFN, Genova 16146, Italy ^dM. Smoluchowski Institute of Physics, Jagellonian University, Krakow, 3005. ^eINFN Laboratori Nazionali del Gran Sasso, Assergi 67010, Italy ^f Kiev Institute for Nuclear Research, Kiev 06380, Ukraine ^gNRC Kurchatov Institute, Moscow 123182, Russia ^hDipartimento di Fisica, Università degli Studi e INFN, Milano 20133, Italy ⁴Max-Plank-Institut für Kernphysik, Heidelberg 69029, Germany ¹Dipartimento di Chimica, Università e INFN, Perugia 06123, Italy ^k Physics Department, Princeton University, Princeton, NJ 08544, U.S.A. ⁴St. Petersburg Nuclear Physics Institute, Gatchina 188350, Russia ^mPhysik Department, Technische Universität München, Garching 85747, Gern ⁿ Physics Department, University of Massachusetts, Amherst MA 01003. U.S., ^oPhysics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A. PLomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics. Moscow 119234, Russia

рр-: 4р→⁴He +2e⁺ + 2v_e + (26. 7 МэВ) и СNО-цикл

 $^{13}N \rightarrow ^{13}C + e^+ + v_e E_o = 1.2 \text{ MeV}$ $^{15}O \rightarrow ^{15}N + e^+ + v_e E_o = 1.7 \text{ MeV}$ $^{17}F \rightarrow ^{17}O + e^+ + v_e Eo = 1.7 \text{ MeV}$

Излучается 5 нейтрино в рр-цепи и 3 нейтрино в СNO-цикле

Солнце производит энергию путем превращения водорода в гелий. Полная выделяемая энергия 26.7 МэВ, из которой 0.6 МэВ уносят нейтрино. 99% энергии производится в рр-цепи, и менее 1 % дает СNO-цикл

Спектры и потоки солнечных нейтрино

Наиболее интенсивный поток pp-нейтрино составляет 6 10¹⁰ v/см²сек, ⁷Be – нейтрино – 5 10⁹, ⁸B-нейтрино - 6 10⁶. Реактор – 10¹³ v/см²сек

Хронология детекторов солнечных нейтрино

02.02.2016

Радиохимические детекторы солнечных нейтрино

Детектор		Мишень масса	Метод	Порог кэВ	Результат (доля от предсказаний ССМ)	
Homestake	1970-1994 108 циклов	С ₂ СІ ₄ ; 615 т	ν_{e} + ³⁷ Cl \rightarrow ³⁷ Ar + e ⁻	814	0.337 ± 0.087	
SAGE (действует)	1990 2006: 157 циклов	Мет.Ga ; 50 т	a + 71Ca $a = 71$ Ca $b = 6$	233	0.520 ± 0.075 (TAUP-2007)	
Gallex	1991-1997 67 циклов	GaCl ₃ ;	v _e + ∩Ga → ∩Ge + e		0.605 ± 0.103	
GNO-30	1998-2003 58 циклов	30.3 1			0.491 ± 0.081	
Gallex+GNO					0.541 ± 0.081	
Gallex+GNO+SAGE (v-2006)				0.529 ± 0.065		

Три(4) радиохимических детектора. CI-Ar массой 615 *m*, *SAGE* – 50 *m* и *GALLEX* – 30 *m*. Детекторы SAGE и Gallex были прокалиброваны с источником нейтрино ⁵¹Cr, Детектор SAGE - в 2004 г. с источником ³⁷Ar.

CI-Ar детектор, Homestake

1. Измеренная скорость образования 37Ar (5 ат /месяц 615 m) составила ~ 1/3 от предсказываемой ССМ. Возникает проблема солнечных нейтрино 2. Многолетние измерения дают возможность поиска зависимости скорости счета от времени. Scientific American, Volume 221, July 1969, pp. 28-37

Грибов, Понтекорво - Михеев, Смирнов

SAGE, GALLEX/GNO: $v_e^{+71}Ga \rightarrow {}^{71}Ge^{+e^{-1}}$

SAGE - радиохимический Ga-Ge эксперимент в Баксанской нейтринной обсерватории продолжает измерения GALLEX/GNO в Гран Сассо 1991-2003

65 .4 $^{+3.1}_{-3.0}$ $^{+2.6}_{-2.8}$ SNU

 $67.6^{+4.0}_{-4.0}$ $^{+3.2}_{-3.2}$ SNU

SAGE и GALLEX подтвердили дефицит нейтрино, но величина не 0.3, а 0.55

02.02.2016

arXiv:0901.2200v3

Ga-аномалия и поиск стерильного нейтрино

Число событий, зарегистрированных от источников v, меньше ожидаемого. Для поиска переходов в с.с. предлагается разместить источник ⁵¹Cr в центре Ga-детектора, разделенного на 2 концентрических зоны. Эксперимент чувствителен к осцилляциям с dm² ~1 эB² с амплитудой ~ n %.

Детекторы, работающие в реальном времени

Детектор			Мишень, масса	Метод	Порог МэВ	Результат
KamiokaNDE-II		86-95	Н ₂ 0 3 кт	$v + e^- \rightarrow v + e^-$	7.5	0.48±0.07
Super Kamiokand e	I	96-01 1496 д		$v + e^- \rightarrow v + e^-$	5.5	0.41±0.01
	Ш	02-05 791 д	Н ₂ 0 50 кт			0.42±0.03
	III IV	2006 548 д 2008-			5.0 4.5 3.5	0.40±0.02
SNO	I	99-01	D ₂ 0 1006 т	$v_e^+d \rightarrow p + p + e^-$ (CC)-1.4 M3B $v_x^+d \rightarrow p + n + v_x$ (NC)-2.22 M3B $v_x^+e^- \rightarrow v_x^+e^-$ (ES)		0 340+0 023+0.029 ();)
	Ш	01-04 391д	+NaCl 2т	³⁵ Cl+n → ³⁶ Cl+8.6 MэB (2-4 γ)	6.5	0.340 ± 0.023 0.031 (v _e)
	ш	04-06	+ ³ Не счетчики	³ He + n → p + ³ H + 0.76 МэВ		0.301 ±0.033

Пять электронных детекторов. SK массой 50 кт. Kamiokande, SK (о. атмосферных v) и SNO (о. солнечных v) – черенковские, Kamland и Borexino – сцинтилляционные.

Kamiokande, S-Kamiokande – H₂O детектор

M. Koshiba and Y.Totsuka

Понижение порога регистрации за 19 лет

SNO - Sudbury Neutrino Observatory

1000 тонн D₂O

9500 ФЭУ (~60% поверхности) 1700 тонн внутренняя защита H₂O 5300 тонн внешней защиты H₂O глубина: 6000 м.в.э..

CC
$$v_e + d \rightarrow p + p + e^-$$

NC $v_x + d \rightarrow p + n + v_x$
ES $v_x + e^- \rightarrow v_x + e^-$

$$\frac{\phi_{CC}}{\phi_{NC}} = 0.340 \pm 0.023 \,(\text{stat.})_{-0.031}^{+0.029}$$

$$\phi_{NC} = (4.94 \pm 0.21 (\text{stat.})_{-0.34}^{+0.38}) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$$

Детектор работал с мая 1999 по ноябрь 2006. Первый результат, опубликованный в 2001 году, показал, что нейтрино осциллируют. Поток 8Внейтрино, зарегистрированных через нейтральный ток, соответствует предсказаниям ССМ, через заряженный ~ 1/3 от ССМ. СІ- и 3Не-вариант для п

Новый SNO+ - сцинтилляционный детектор

Основная цель – рер-нейтрино и гео-нейтрино и 2b-распад 130Te. Сцинтиллятор LAB (2014). Глубина 5890 м.в.э (3800 м.в.э. Борексино) Производство космогенной активности (¹¹C) в ~20 раз меньше, чем в Борексино. Возможность регистрации рер- и CNO-v. pp – проблема.

Задача следующего поколения детекторов солнечных нейтрино состоит в измерении спектров всех солнечных нейтрино. Это позволит лучше понять как структуру и процессы в Солнце, так и механизм нейтринных осцилляций в веществе. Март 2014: Заказ 1-ой партии 130Te. Ввод в 2015.

KamLAND – детектор реакторных нейтрино

- kton of liquid scintillator
 - 80% dodecane, 20% pseudocumene
 - I.36±0.03 g/l of PPO
 - density: 0.78 g/cm³
- Spherical baloon
 - radius: 6.5m
 - \circ thickness: 135 μ m
- Stainless-steel Sphere
 - radius: 9m
 - 1879 PMTs
 - 1325 new 17" PMTs
 - · 554 old 20" PMTs (Kamiokande)
- Outer detector
 - 3.2 kton water-Cherenkov

KamLAND начал измерения в январе 2002 и через 145 дней представил первый результат, который выбрал LMA решение для антинейтрино. В 2002-2007 зарегистрировал 8В-нейтрино (2011).

KamLAND – результат для ⁷Ве-нейтрино

arXiv:1405.6190v1

165.4 kton-day exposure of KamLAND. The observed rate is **582 ± 90 (kton·day)**⁻¹, which corresponds to a 862 keV ⁷Be solar neutrino flux of (**3.26 ± 0.50)**×**10**⁹ cm⁻² s⁻¹, assuming a pure electron flavor flux. Comparing this flux with the standard solar model prediction and further assuming three flavor mixing, a survival probability of **0.66±0.14** is determined from the KamLAND data. Utilizing a global three flavor oscillation analysis, we obtain a total ⁷Be solar neutrino flux of (**5.82 ± 0.98)**×**10⁹ cm⁻²s⁻¹**, which is consistent with the SSM predictions.

Пороги регистрации и спектры нейтрино

Ga-Ge и Cl-Ar детекторы с низким порогом регистрировали интегральный поток. Порог регистрации SK, SNO и KamLand более 5 (3.5) МэВ. До Борексино, SK и SNO KamLand регистрировали ~10⁻⁴ потока солнечных V.

Проблема солнечных нейтрино

 Потоки нейтрино, измеренные CI-Ar, Ga-Ge, SK лежат в интервале (0.3-0.6) от ожидаемых в ССМ и не согласуются между собой
 Различные детекторы регистрируют разные части нейтринного спектра
 Детекторы CI-Ar и Ga-Ge регистрируют только электронные v, SKamiokande perистрирует нейтрино всех типов, однако σv_e/ σv_µ = 7.

Синий – эксперимент. Результат SNO для нейтрального тока совпал с предсказаниями ССМ. Доля ve составила 1/3 от общего потока нейтрино.

02.02.2016
Осцилляционные решения для солнечных нейтрино

Эксперименты с солнечными нейтрино 5 вариантов решений SMA VAQ QVO LOW LMA До результата KamLand модель спин-флэйворной прецессии, связанной с магнитными моментами нейтрино, имела лучшее согласие с экспериментальными данными, чем осцилляционное решение

02.02.2016

Решение = Смешивание нейтрино + осцилляции в веществе = LMA+MSW

BOREXINO –сцинтилляционный детектор солнечных нейтрино

- Основная цель проекта регистрация солнечных нейтрино с энергией менее 2 МэВ в реальном времени. Выбор осцилляционного решения – LMA, SMA или LOW
- Реакция рассеяние нейтрино на электроне
- Детектор жидкий сцинтиллятор
- Основная проблема естественная радиоактивность. Необходимый уровень очистки сцинтиллятора от U, Th 10⁻¹⁷ г/г
- Основная идея максимально очистить легкие жидкости от естественной и искусственной р/а. Первый слой пассивной защиты от внешнего гамма- и нейтронного излучения – сцинтиллятор и вода. Максимальная степень очистки центрального сцинтиллятора.

Основная задача Борексино:

Регистрация упругого рассеяния 7Венейтрино на электроне.

Поток монохроматических 7Ве-нейтрино (E=862 кэВ) составляет 10% от общего потока солнечных нейтрино

Спектр электронов отдачи

99.994% of solar neutrino spectrum is NOT measured yet in real-time mode 10 Total spectrum 10¹² pp $v(^{8}B) = 0.46 \text{ cpd}/100 \text{ tons}$ ρ 10¹¹ 10 10 $v(^{7} \text{Be})_{gg2} = 47.6 \text{ cpd}/100 \text{ tons}$ 10¹⁰ × Flux on Earth (v /cm 3 s) v(CNO) = 5.36 cpd/100 tons 10 tons 10 pep 10⁸ v(pep) = 2.8 cpd/100 tons Real-time measured solar neutrino flux by 100 10 v(pp) = 133 cpd/100 tons SK and SNO °в E 10[€] X 10 (day 10⁻¹ 10 10³ Events Ga exps 10 102 CI exp 10¹ 0.1 10 10 100 200 300 800 900 1000 500 600 700 Energy (MeV) Photoelectrons

Проверка и уточнение параметров осцилляционного LMA MSW решения

02.02.2016

Семинар ОФВЭ

Сечение рассеяния нейтрино на электроне

$$\frac{d\sigma}{dE_{e}} = \frac{2G_{F}^{2}m_{e}}{\pi} \left(g_{L}^{2} + g_{R}^{2} \left(1 - \frac{E_{e}}{E_{V}}\right)^{2} - g_{L}g_{R}\frac{m_{e}E_{e}}{2E_{V}^{2}}\right)$$

Сечение реакции ~ 10^{-45} см² $G_F^2 me/2\pi = 4.3 \cdot 10^{-45}$ см² МэВ⁻¹

Для электронных нейтрино – CC+NC: $g_L = 1/2 + sin^2 \theta_W$, $g_R = sin^2 \theta_W$ - для v_e (W+Z)

Для μ - и τ -нейтрино σ в ~5 раз меньше: g_L =-1/2+sin² θ_W , g_R =sin² θ_W - для $v_{\mu\tau}$ (Z)

детектор регистрирует v_e , v_μ и v_τ :

$$\frac{d\sigma}{dE_e} = P_{ee} \cdot \left(\frac{d\sigma}{dE_e}\right)_{W+Z} + (1 - P_{ee}) \cdot \left(\frac{d\sigma}{dE_e}\right)_Z$$

Ожидаемый эффект ~ 50 событий на 100 тонн в сутки в интервале 0 – 700 кэВ

Световыход PC+PPO 1.1x 10⁴ фотонов/МэВ 1)Хорошее энергетическое разрешение; Регистрируем 500 ф.э./ МэВ 2) Низкий порог регистрации; Триггер 25 ф.э. = 50 кэВ 3)Хорошая пространственная реконструкция. 14 см при энергии 1 МэВ 4)Возможность α/β дискриминации

ОДНАКО...

-1)невозможно определить направление нейтрино;
-2)событие (v,e)-рассеяния является одиночным событием, не сопровождающимся другой частицей

Чтобы выделить данную реакцию необходимо понизить фон естественной радиоактивности в ~ 10¹⁰ раз

ВЫСОЧАЙШИЕ ТРЕБОВАНИЯ К РАДИАЦИОННОЙ ЧИСТОТЕ СЦИНТИЛЛЯТОРА И МАТЕРИАЛОВ ДЕТЕКТОРА

Нейтрино из рр-цепочки

Вогехіпо зарегистрировало v из 4-х реакций рр-цепочки (hep). Остался СNO-цикл

02.02.2016

Национальная лаборатория Гран Сассо

Подземная лаборатория Гран-Сассо

Borexino collaboration

Детектор БОРЕКСИНО (BOREXINO)

02.02.2016

2212 ФЭУ на поверхности стальной сферы

Стальная и нейлоновые сферы

Вытеснение воды сцинтиллятором

ФЭУ, стальная и нейлоновая сферы

02.02.2016

Семинар ОФВЭ

Вид на OPERA, на и внутри сферы, центр управления

02.02.2016

Семинар ОФВЭ

Рекордная чистота жидкого сцинтиллятора

Компонент	Типичная распространенность (источник)	CTF	Borexino Фаза 2
¹⁴ С / ¹² С [г/г]	10 ⁻¹² (космогенный)	2·10 ⁻¹⁸	2.7x10 ⁻¹⁸
²³⁸ U [г/г] (по ²¹⁴ Ві)	2·10⁻⁵ (пыль)	< 4.8·10 ⁻¹⁶	1.6 x 10 ⁻¹⁷ <9.7 x 10 ⁻¹⁹
²³² Th [г/г] (по ²¹² Bi)	2·10⁻⁵ (пыль)	< 8.4·10 ⁻¹⁶	6.8 x10 ⁻¹⁸ 1.2 x10 ⁻¹⁸
²²² Rn (²³⁸ U [г/г] по ²¹⁴ Bi)	100 атомов/см ³ (воздух)	(3.5±1.3) ·10 ⁻¹⁶	~10 ⁻¹⁶
⁴⁰ К [г/г]	2·10⁻ ⁶ (пыль)	≤ 10 ⁻¹⁵	< 10 ⁻¹⁴
²¹⁰ Pb[µБк / т]	(поверхностное з.)	500	~1
⁸⁵ Kr [µБк / т]	1 Бк/м ^з (воздух)	600	0.29/(т сут)
³⁹ Ar [µБк / т]	17 mБк/м³(воздух)	<800	~1

Нижний порог регистрации определяется активность 14С, которая на 6 порядков меньше чем на поверхности. U и Th в 10¹² раз меньше, чем в о.с. Сигнал от 7Be-нейтрино 5х10⁻⁹ Бк/кг. Активность ²³⁸U, ²³²Th в воде 10 Бк/кг

Что умеет Борексино:

- 1. Определение энергии события
- 2. Восстановление координат (x, y, z) события
- Альфа-бета дискриминация (отличить сигнал, вызванный альфачастицей, от сигнала, вызванного электроном)

Real Property in the second se

Определение энергии события

1. Энергия определяется как число сработавших ФЭУ (или как Σф.э. или ΣАЦП_і). Калибровка была выполнены по спектрам ¹⁴С, ²¹⁴Ві-214Ро, 11Си ²⁴¹Am⁹Be. 2. Учитывается зависимость числа фотонов от dE/dX(ионизационн ый дефицит)

Регистрируется $11000 \times \epsilon_{\text{геом}} \times \epsilon_{\phi.\kappa.} = 500 \phi.э. для события с энергией 1 МэВ. Энергетическое разрешение 5%/<math>\sqrt{E(MэB)}$. Триггер устанавливается при срабатывании **К ФЭУ** во временном окне 60 нс. Значение K = 25 соответствует порогу 50 keV, скорость счета 11 Hz определяется активностью ¹⁴C.

Восстановление координат (x, y, z) события

Необходимо, поскольку фон в полном объеме недостаточно подавлен из-за γквантов, выходящих из сферы и ФЭУ. Только условие R<3.2 м, которое вырезает внутренние 100 т, обеспечивает приемлемое соотношение эффект/фон. Программы реконструкции используют время прихода фотонов, которое регистрируется TDC. Точность восстановления ~ 1/sqrt(E) и зависит от скорости излучения фотонов

02.02.2016

Семинар ОФВЭ

α/β - дискриминация

Borexino coll. NIM A 584,98 (2008)

Световыход для α–частиц в ~10 раз меньше, чем для электронов той же энергии. α–частицы естественной р/а регистрируются как события с E< 1 МэВ. Для отделения используется зависимость скорости высвечивание фотонов от плотности ионизации.

Измерения с нейтронным AmBe источником позволили настроить p(n)/β дискриминацию

Измерения с калибровочными источниками

Калибровка с источниками ¹⁴C, ²²²Rn, ⁵⁴Mn, ⁶⁵Zn, ⁸⁵Sr, ²²²Rn, AmBe

Положение определено с точностью 2 см Прецизионная энергетическая калибровка Функция отклика в зависимости от положения для 250 точек внутри сферы. 35 суток. Настройка t-отклика ФЭУ по лазеру

β: 100 Bq ¹⁴C+²²²Rn растворенные в PC:
 γ: 7 источников от 122 кэВ to 9.5 МэВ
 α: ²²²Rn,
 n: AmBe

Объем (масса) центрального детектора определялся исходя из измерений с калибровочными источниками. Суммарная (масса, Е шкала, время, эффективности,..) систематическая ошибка составляет 3.5%. Ответная функция задается *α*-пиком ²¹⁰Ро.

Основные компоненты спектра Борексино

Регистрация антинейтрино

- 1. Реакторные антинейтрино
- 2. Гео-анти-нейтрино
- 3. Солнечные анти-нейтрино
- 4. Фоновые анти-нейтрино (от SN)

Для регистрации используется реакция обратного бета-распада

анти-v +
$$p \rightarrow n$$
 + e^+

$n + p \rightarrow d + \gamma$ (2.2 МэВ, 250 мкс)

Два последовательных события в интервале 1 мс с энергиями E-0.768 МэВ и 2.2 МэВ являются четким указателем реакции. Порог реакции составляет 1.8 МэВ

Реакторные нейтрино

 $v_{\rho} + p \rightarrow e^{+} + n \Rightarrow n + p \rightarrow d + \gamma$ $E_{per} = E_v - 0.78 MeV, \sigma \sim 10^{-42} cm^2$ 0.9 0.8 0.7 22 соб/год 0.6 0.5 15 соб/год 0.4 0.3 0.2 0.1 0 Visible Energy [MeV]

Обратный бета-распад:

Ожидаемая скорость счета составляет 15 событий в год при 100% мощности всех реакторов. Борексино удачно расположен для поиска гео-нейтрино.

207 ядерных реакторов в 17 странах. 245 остальных в мире дают 2.5%. 13 реакторов дают 40% вклад в ожидаемый сигнал. 3 наиболее мощных атомных станции дают 13%

¹³С(α,n)¹⁶О фон от пренебрежимо мал. Космогенный фон связанный с β-n с изотопами (⁸He+⁹Li) и быстрыми нейтронами, пропущенными мюонной защитой подавляются 2 сек запретом после прохождения мюона через IV. Мертвое время 11%

Осцилляции реакторных нейтрино

Гео-нейтрино –

новая возможность узнать как устроена Земля

Тепловой поток (30 – 46) ТВт Природа неясна Гравитация, яд реактор, фазовые переходы, химические реакции Какова доля радиогенного (U, Th, 40K) тепла? Стандартная BSE модель предсказывает 19 ТВт

Какая доля мощности Ф≈ 60 mW/m² связана с естественной р/а? 44±1 TW (Pollack 93) 31 ±1 TW (Hofmeister & Criss 04 Содержание в метеоритах – 19-31 TW

 $\begin{array}{l} \mathsf{H}_{\mathsf{R}}[\mathsf{TW}] &= 9.5 \; \mathsf{M}(\mathsf{U})[10^{17} \mathrm{\kappa} \mathrm{\Gamma}] + 2.7 \; \; \mathsf{M}(\mathsf{Th}) + 3.6 \; \mathsf{M}(^{40} \mathrm{K}) \\ \mathsf{L}_{\mathsf{n}} \; [10^{24} \mathrm{c}^{-1}] = 7.4 \; \mathsf{M}(\mathsf{U})[10^{17} \mathrm{\kappa} \mathrm{\Gamma}] + 1.6 \; \mathsf{M}(\mathsf{Th}) + 27 \; \mathsf{M}(^{40} \mathrm{K}) \end{array}$

Ожидаемый спектр позитронов

Decay	E _{max} [MeV]	Q [MeV]	Q - <e<sub>v> [MeV]</e<sub>	kg ⁻¹ s ⁻¹	W kg ⁻¹
²³⁸ U-> ²⁰⁶ Pb+8α+6e ⁻ + 6 v _e	3.25	51.7	47.7	7.41×10 ⁷	0.94×10 ⁻⁴
²³² Th-> ²⁰⁸ Pb+6α+4e ⁻ + 4 ν _e	2.25	42.7	40.4	1.62×10 ⁷	0.26×10 ⁻⁴
⁴⁰ K-> ⁴⁰ Ca+e ⁻ +v _e (89%)	1.311	1.311	0.59	2.30×10 ⁸	0.22×10 ⁻⁴
40 K + e -> 40 Ar+e ⁻ + v_{e} (11%)	0.044	1.505	1.461	0.28×10 ⁸	0.67×10 ⁻⁵

02.02.2016

Семинар ОФВЭ

Результат 2015 г. = 2056 суток измерений

77 анти-нейтринных событий за экспозицию 907±44 т×год. **24** геонейтрино и **53** реакторных нейтрино. Практически нулевой фон.

Стерильное нейтрино: Борексине

Проект SOX: Short distance Oscillations with BoreXino

Источники нейтрино: 1) Калибровки детектора по энергии и эффективности

2) Поиска магнитного момента

Стерильное нейтрино:

 разрешение по координате
 14 см при 1 МэВ
 по энергии 5% при 1 МэВ два подхода к поиску
 осцилляций на короткой базе
 использовать абсолютную интенсивность
 использовать зависимость
 использовать от расстояния

Три этапа поиска осцилляций нейтрино с источниками нейтрино ⁵¹Cr и ¹⁴⁴Ce

Расположение источников нейтрино

А-под детектором 825 см до центра. Без изменений.
В – внутри водного танка 700 см до центра.
С – центр. Максимум изменений в конструкции

Транспортная система

Источники нейтрино и антинейтрино

Источник (анти) нейтрино	Мо да	Е _v или Е _{max} (кэВ)	т, Сут	Вт/ кКи	Кг/ МКи	производство
51Cr	EC	746 (81%)	40	0.19	0.01	50Cr(n,γ)51Cr
37Ar	EC	813 (100%)	50	~0.01		40Ca(n,α)37Ar
90Sr-90Y	β-	2280 (100%)	1516 0	6.7	7.3	Деление осколок
144Ce-144Pr	β-	2.9975 97.9%	411	7.6	0.3	Деление осколок

Основные требования к возможным источникам: счет~10⁴ соб/год, E > 250 кэB, t > 30 сут, мин (Вт, размер, примеси)

02.02.2016

Семинар ОФВЭ

Источники нейтрино ⁵¹Cr (³⁷Ar)

Рассеяние нейтрино на электроне $v + e \rightarrow v + e, \sigma = 10^{-45} \text{см}^2$

E = 752 кэВ т = 39.96 суток **190 W/MCi** от 320 keV **36 кг 38% обогащения** 1.8 MCi реактор 35 MW Дважды калибровали GALLEX и SAGE

Источник ⁵¹Cr в эксперименте GALLEX/GNO

02.02.2016

Сигнал от ⁵¹Сг-нейтрино (750 кэВ)

Ожидаемое распределение скорости счета в зависимости от расстояния до источника 51Cr для dm² = 2 эВ² и sin²2θ= 0.3. 10 МКи на расстоянии 8.25 м от центра (точка А) за 60 суток измерений. Размеры источника 15-23 см. При МС симуляции используются реально измеренный фон детектора.
Чувствительность SOX к стерильному нейтрино

⁵¹Cr: 370 PBq на расстоянии 8.25 м. 100 суток накопления при 90 % живого времени. 15 недель до этого измерение фона. Центральный детектор 133 т. ¹⁴⁴Ce: анти-v с E_0 =3.0 МэВ. Фаза В. 75 PBq (75 kCi) на поверхности СС. Радиус сцинтиллятора увеличен с 4.25 до 5.5 м.

Проблемы источника 51Cr

 Время жизни 30 суток (срочность доставки)
 Энергия 750 кэВ близка к энергии ⁷Ве-нейтрино 862 кэВ, 3. Фон ⁷Ве сравним с эффектом
 4. Нейтрино, не антинейтрино (σ)
 Для 12 МКи необходимо дополнительное обогащение по изотопу ⁵⁰Cr (Маяк), 37.5% недостаточно

Возможные источники антинейтрино

Couple	$\tau_{1/2}$ of parent	Q_{β} – of daughter
⁴² Ar - ⁴² K	$33\mathrm{y}$	$3.53{ m MeV}$
⁹⁰ Sr - ⁹⁰ Y	$28.9\mathrm{y}$	$2.28{ m MeV}$
¹⁰⁶ Ru - ¹⁰⁶ Rh	$372\mathrm{d}$	$3.55{ m MeV}$
144 Ce - 144 Pr	$285\mathrm{d}$	$3.00{ m MeV}$

Источник антинейтрино ⁹⁰Sr -⁹⁰Y

Обратный бета-распад $v + p \rightarrow n + e^+$ $< \sigma > = 7.2 \times 10^{-45} \text{сm}^2$

Рассеяние нейтрино на электроне $v + e \rightarrow v + e, \sigma \sim 10^{-45} \text{сm}^2$

Микаэлян, Синев, Фаянс Письма ЖЭТФ 1998

Осколок E₀ = **2.28 МэВ** т = 28.8 лет **6.7 кW/MCi** 7.5 кг/MCi *Термоэлектрические генераторы* **0.2 МCi**

Источник нейтрино ¹⁴⁴Се -¹⁴⁴Рг М. Gribier et al. arXiv:1107.2335

144Ce-144Pr: спектр антинейтрино

Максимальная энергия нейтрино для 144Се – 318 кэВ, для 144Рг - 3.0 МэВ. Порог реакции обратного бета-распада 1.8 МэВ.

Кольская АЭС (с 1973 г.)

КАЭС - 4 блока ВВР-440. Выход 144Се составляет 5.5% при делении 235U и 3.7% при делении 239Ри.Время жизни 144Се 411 сут. Выбрано свежее топливо с временем охлаждения < 2 лет, которое в специальном контейнере доставлено на МАЯК.

ПО МАЯК, г. Озёрск

Комплектация радиоизотопной продукции

Пульт управления радиохимическим производством

МАЯК получил свежее топливо в марте 2015. Для получения 100 кК будет добавлено топливо исследовательского реактора с высоким обогащением по 235U. ОПЯД поставил в МАЯК 6 гамма-спектрометров в 2014 г.

02.02.2016

Семинар ОФВЭ

ПИЯФ поставил в МАЯК спектрометры

В отделе полупроводниковых ядерных детекторов разработано и изготовлено **6 спектрометрических систем на основе СdTe детекторов** по заказу **ПО МАЯК** Челябинск для контроля технологических процессов переработки ядерного топлива по гамма спектрам. Детекторы ПИЯФ обладают лучшим в мире, среди CdTe детекторов, энергетическим разрешением для жестких (> 100 кэВ) ү-квантов.

Производство 144Се на базе Пьюрекс процесса

Процесс производства займет около 9 месяцев. Он включает в себя переработку нескольких тонн ОЯТ. После растворения ТВЭЛов в азотной кислоте исходный раствор, в зависимости от глубины выгорания топлива, содержит 250—300 г/л U, до 3 г/л Ри и до 100 мг/л Np.

МАЯК перерабатывает 100 m ОЯТ в год. 1 тонна ОЯТ содержит 13 кг РЗЭ (22 г 144Се (70 кКи, 3 года))

В течение первой экстракции в органическую фазу извлекаются U, Pu, Np, актиниды Am, Cm и ряд осколочных элементов (P3Э (в том числе Ce), Ru, Zr, Nb и др.).

Хромотографическое отделение Се от других РЗЭ. Отжиг Се до СеО2. Сторонняя ү-активность < 10⁻³ Бк/Бк 144Се Активность 241Ат, 241Ст < 10⁻⁵ Бк/Бк (Р и п's)

Прессовка. Герметизация двухслойный стальной цилиндр. На выходе **30 g of** ¹⁴⁴**Ce** в 5 kг CeO2. Загрузка в защитный W-контейнер (2.3 m) и в транспортный контейнер (21 m).

Вольфрамовый контейнер

Самая большая вольфрамовая составная защита в мире. Цилиндр высотой 60 см и диаметром 60 см. Толщина 19 см. Масса 2.3 тонны. Размеры определяются линией 144 Pr с энергией 2.185 кэВ (BR = 0.7%), которую нужно подавить в 10¹² раз и размерами яма (1 м) под Борексино. Будет произведено в Китае. Температура внутри 500°С, на поверхности 80°С.

Транспортировка МАЯК ---> LNGS

THE A. B AND C OF GRAN SASSO

2м New basket W-shielding

Транспортный контейнер 21 т

Из Челябинска в Петербург поездом (август-октябрь) далее по морю во Францию, Сакле и затем автотранспорт в Гран Сассо (до конца года). Время в пути ~ 1 месяц. Активность уменьшится на 7%

Скорость счета в зависимости от R и E

Чувствительность SOX_Се к стерильному нейтрино

100 кКи на 8.5 м от центра 1.5 года измерений

Измерение активности – два калориметра

Ожидается **216 Вт/ 10¹⁵ Вq** или 800 Вт в начале измерений. Будет измеряться поток и температура воды на входе и выходе. **Pdt = CdMdT + Рутечка**. Задача минимизировать утечки тепла. Теплопроводность (мосты). Конвекция (вакуум). Радиация (экраны). Измерения тепловой мощности с точностью < 1.5 %. Перевод в активность **A = P / <E>** (среднее энерговыделение на распад). Требования к сторонней γ- и α-активности.

Калориметр TUM / INFN испытывается

CONVECTION

Vacuum system Turbo molecular pump skroll pump

 $P < 5 \cdot 10^{-5} \, mbar$

IRRADIATION

- 2 stages of superinsulator (10 foils each)
- Thermalization of the external chamber by hot water flow

CONDUCTION

Hanging platform suspended by three kevlar ropes

Калориметрия ¹⁴⁴Се-¹⁴⁴Рг источника (1%)

Зависимость чувствительности эксперимента к осцилляционным параметрам от точности определения активности источника антинейтрино. Штриховая линия соответствует анализу только формы осцилляционной кривой (не зависит от активности источника).

Бета-спектры, спектр нейтрино $\boldsymbol{\Phi}_{v}$ и $\boldsymbol{\Phi}_{v} \times \sigma$ (сечение)

Измерение β-спектров ¹⁴⁴Ce-¹⁴⁴Pr

С(Ek) – зависит от конкретного перехода. Shape-фактор для запрещенных переходов (0→0, 1-го порядка, обычно ограничиваются b). Большая неопределенность в измерениях С(Ek). Влияет на среднее <E>, определение активности и ожидаемой скорости счета.

Спектр нейтрино при распаде ¹⁴⁴ Pr

Спектры 144Се и 144Pr соответствуют неуникальным запрещенным в первом порядке бета-переходам. Форма спектра 144Pr известна с точностью несколько процентов. Необходимы новые измерения бета-спектров 144pr, чтобы достичь высокой (<1%) точности для коэффициента, связывающего тепловую мощность и активность, и для ожидаемой скорости счета реакции обратного бета распада.

2 установки для измерение β-спектра ¹⁴⁴Pr

TUM spectrometer (PRL. 112, 122501)

CEA spectrometer (under development)

Plastic scintillator + multiwire chamber γ veto

Plastic scintillator + encased source High coverage & light collection

Измерения β-спектров ¹⁴⁴Ce-¹⁴⁴Pr в ПИЯФ

Два Si(Li) d 30 мм h 8 мм

Для измерения энергетического спектра будут использоватьсяь два цилиндрических планарных Si(Li)-детектора. В центре торца одного из детек-торов будет вышлифована лунка, глубиной ≈0.5 мм и диаметром 3 мм, в которой наносится источник 144Ce-144Pr. Рабочая область каждого детектора имеет диаметр 30 мм и толщину 9 мм. Детекторы плотно соединяются друг с другом торцевыми плоскостями, устанавливаются в криостат и охлаждаются до температуры жидкого азота. Криостат будет окружен небольшим слоем пассивной защиты из свинца (25 мм) от внешней радиоактивности. Напротив криостата с Si(Li)=детекторами располагается HPGe-детектор диаметром 60 мм и длиной 60 мм, включенный в схему совпадений с Si(Li)–детекторами. Это позволит изучить схему распада и учесть тормозное излучение.

Чувствительность SOX_Се к стерильному нейтрино

100 кКи на 8.5 м от центра 1.5 года измерений

Возможность обнаружения стерильного нейтрино в SOX_Ce

100 кКи 144Се, известные с 1.5% точностью на расстоянии 8.4 m от центра Borexino

02.02.2016

Семинар ОФВЭ

1. Борексино – хороший детектор для поиска осцилляций нейтрино с искусственными источниками нейтрино. Детектор обладает лучшим энергетическим и пространственным разрешением, а также минимальным фоном в низкоэнергетической области.

2. Рассмотренные источники нейтрино ⁵¹Cr и антинейтрино ¹⁴⁴Pr активностью 10 МКи и 100 кКи, соответственно, обеспечивают чувствительность достаточную для проверки области параметров осцилляций, соответствующих Ga- и реакторной аномалии.

3. Первый эксперимент с источником ¹⁴⁴Pr планируется выполнить в течении 2016-2018 г.г. без каких либо изменений в конструкции и в программе измерений солнечных нейтрино.

4. Результаты эксперимента с ¹⁴⁴Pr определят программу измерений с источником нейтрино ⁵¹Cr. Наиболее привлекательные измерения с целью поиска осцилляций на коротких расстояний и CPT нарушения могут быть проведены с источниками нейтрино и антинейтрино, расположенными в центре Борексино.

Дополнительные слайды

Спасибо за внимание!

Эксперименты и Проекты

arXiv:1512.04758v2 [hep-ph] 16 Dec 2015

Project	neutrino	source	E	L	status
			(MeV)	(m)	
SAGE [166]	ν_e	⁵¹ Cr	0.75	$\lesssim 1$	in preparation
CeSOX [167, 168]	$\bar{\nu}_e$	¹⁴⁴ Ce	1.8 – 3	5 - 12	in preparation
CrSOX [167]	ν_e	⁵¹ Cr	0.75	5 – 12	proposal
Daya Bay [169, 170]	\bar{v}_e	¹⁴⁴ Ce	1.8 – 3	1.5 – 8	proposal
JUNO [171]	\overline{v}_e	¹⁴⁴ Ce	1.8 – 3	$\lesssim 32$	proposal
LENS [172]	v_e, \bar{v}_e	⁵¹ Cr, ⁶ He	$0.75, \leq 3.5$	$\lesssim 3$	abandoned
CeLAND [173]	\overline{v}_e	¹⁴⁴ Ce	1.8 - 3	$\lesssim 6$	abandoned
LENA [174]	ν_e	⁵¹ Cr, ³⁷ Ar	0.75, 0.81	$\lesssim 90$	abandoned

Table 2: Main features of new source experiments and their status according to our knowledge.

Project	P_{th}	Mtarget	L	Depth	status
	(MW)	(tons)	(m)	(m.w.e.)	
Nucifer (FRA) [175]	70	0.8	7	13	operating
Stereo (FRA) [176]	57	1.75	9 - 12	18	in preparation
DANSS (RUS) [177]	3000	0.9	10 - 12	50	in preparation
SoLid (BEL) [178]	45 – 80	3	6 – 8	10	in preparation
PROSPECT (USA) [179]	85	3, 10	7 - 12, 15 - 19	few	in preparation
NEOS (KOR) [180]	16400	1	25	10 - 23	in preparation
Neutrino-4 (RUS) [181]	100	1.5	6 – 11	10	proposal
Poseidon (RUS) [182]	100	3	5 - 8	15	proposal
Hanaro (KOR) [183]	30	0.5	6	few	proposal
CARR (CHN) [184]	60	~ 1	7,11	few	proposal

A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam arXiv:1503.01520v1

si	n²	20	еμ

Detector	Distance from BNB Target	LAr Total Mass	LAr Active Mass
LAr1-ND	110 m	220 t	112 t
MicroBooNE	470 m	170 t	89 t
ICARUS-T600	600 m	760 t	476 t

Проекты и Эксперименты

Accelerator Decay-in-Flig	TAUP Presentations: Talks Posters				
Fermilab Short-Baseline (SBND, MicroBooNE (Toups), ICARUS (Varanini))					
T2K Near Detector	nuSTORM				
Accelerator Decay-at-Res	<u>t</u> :				
OscSNS	IsoDAR	KDAR/KPipe			
Reactor Experiments:					
Nucifer	Stereo (Haser)	Solid (Yarmia)			
DANSS	POSIDON	Neutrino-4			
CARR	Korean SBL	Prospect (Heeger)			
NuLAT	CHANDLER				
Radioactive Neutrino Sources:					
SOX (Vivier)	LZ-Cr (McKinsey)	RICCOCHET			
Sterile Searches that are not Short-Basline:					
OPERA (Di Crescenzo)	IceCube (Salvado)	SHiP (De Serio)			
MINOS+ (Holin)	Plank (Lattanzi)	KATRIN (Mertens)			