Исследование протон-протонных столкновений при пучковом импульсе 1683 МөВ/с.

K.N. Ermakov, V.A. Nikonov, O.V. Rogachevsky, A.V. Sarantsev, V.V. Sarantsev, S.G. Sherman

План изложения

1. Введение.

2.Экспозиция водородной камеры и отбор событий.

3.Упругое рассеяние.

4.Экспериментальные спектры реакции pp→pnπ⁺ и сравнение с моделью OPE .
5.Парциально-волновой анализ реакций pp→pnπ⁺ и pp→ppπ°.

5.Результаты парциально волнового анализа.

Задача: определить вклады различных волн в сечения процесса рождения одиночного пиона в области энергий ниже 1 ГэВ.

35-см пузырьковая водородная камера, находящаяся в магнитном поле 1.48Т, облучалась протонным пучком с импульсом 1686 M₃B/c. Получено около 9*10⁴ кадров. Проводился поиск 2-х лучевых событий, затем выполнялись измерения треков и после геометрической реконструкции события следовал кинематический фит.

События могли принадлежать реакции упругого pp-рассеяния или процессам с рождением пионов:

 $pp \rightarrow pp$ $pp \rightarrow pn\pi^+$ $pp \rightarrow pp\pi^\circ$ $pp \rightarrow d\pi^+$ $pp \rightarrow d\pi^+\pi^\circ$

Отбор событий производился по кинематическому фиту с χ^2 критерием на 1% доверительном уровне. Отобрано всего 7457 событий.

Elastic differential cross section

moment of 1689.5 MeV/c.

Elastic differential cross section

The blue triangles – the data of Dobrovolsky et al. taken at 1685.7 MeV/c

The cross section of elastic scattering: $\sigma_{el} = 23,7 \pm 0.6$ mbn $\sigma_{pp \rightarrow pn\pi^+} = 18.9 \pm 0.6$ mbn $\sigma_{pp \rightarrow pp\pi o} = 4.50 \pm 0.17$ mbn $\sigma_{pp \rightarrow d\pi^+} = 0.05 \pm 0.02$

One-pion exchange model.

According to OPE model the main role in the reaction $NN \rightarrow NN\pi$ is played by the pole diagrams.

The matrix element of any diagram can be presented as a product of three factors: the propagator, the amplitude of the πN scattering and the πNN vertex function

$$M_i \sim T(z_i, y_i^2, k_i^2) G(k_i^2) / (k_i^2 + \mu^2)$$

where z_i is the total energy of the πN system, y_i^2 is the fourmomentum transfer square in the πN scattering vertex, k_i^2 is the four-momentum square of the virtual pion and μ^2 is the pion mass squared. The form factor function of the πNN vertex taking into account the nonpole diagram contributions was not determined in the frame of the OPE model. The following form was suggested for the form factor by Suslenko and Gaisak:

 $G(k_i^2) = \alpha \mu^2 / [k_i^2 + (\alpha + 1) \mu^2]$

The choice of α in the range 8-9 gave a good description of the experimental data in the energy range 600-1000 MeV.

The πN scattering amplitude T(zi, yi2, ki2) and its off-shell behaviour were taken according Ferrary and Selleri, where off-shell corrections were introduced into partial waves. We confined ourselves to the P₃₃-wave only assuming the leading role of the Δ_{33} -resonance in the πN scattering. The partial off-shell f₃₃ amplitude was taken in the form

$$f_{33}(z_i, k_i^2) = \Gamma(k_i^2) f_{33}(z_i; -\mu^2)$$

where $\Gamma(k_i^2)$ is the off-shell correction factor calculated by F.Selleri in the frame of dispersion relations, while on-shell partial f_{33} amplitude was taken in Breit-Wigner form. The reaction matrix element is the sum of the matrix elements of the diagrams

$$M = M_A - M_B - M_C + M_D$$

$$np \to pp\pi^-$$
 (1)

$$d\sigma = \frac{(2\pi)^4 |A|^2}{4|\mathbf{k}|\sqrt{s}} \, d\Phi_3(P, q_1, q_2, q_3) \,, \qquad P = k_1 + k_2 \,, \ (2)$$

$$d\Phi_m(P,q_1\dots q_m) = \delta^4(P - \sum_{i=1}^3 q_i) \prod_{i=1}^3 \frac{d^3 q_i}{(2\pi)^3 2q_{0i}} . \quad (3)$$

$$A = \sum_{\alpha} A^{\alpha}_{tr}(s) Q^{in}_{\mu_1 \dots \mu_J}(SLJ) A_{2b}(i, S_2 L_2 J_2)(s_i) \times$$

$$Q_{\mu_1...\mu_J}^{fin}(i, S_2 L_2 J_2 S' L' J)$$
. (4)

To suppress contributions of amplitudes at high relative momenta we introduced the Blatt-Waisskopf form factors. Thus the energy depended part of the partial wave amplitudes with production of the resonance, for example, in the two-particle system 12 (e.g. π p) and the spectator particle 3(n) has the form

 $A = A_{tr}^{\alpha}A_{2body}^{S2,L2,J2}(s_{12})q^{L}k_{3}^{L'} / (F(q^{2},L,R)F(k_{3},L',r_{3}))^{1/2}$

where q is the momentum incident proton and k_3 is the momentum of the spectator particle. For the description of the energy dependence of the πN system we taken two resonances $\Delta(1232)$ and Roper N(1440). Resonance contributions are parameterized as follows:

 $A_{2body}^{S2,L2,J2}(s_{12}) = k_{12}^{L2} / [F(k_{12},L_2,r_{12})^{1/2} (M_R^2 - s_{12}^2 - M_R^2 \Gamma)]$

 $\Gamma = \Gamma_{\rm R} M_{\rm R} k_{12}^{2L2+1} F(k_{\rm R}^2, L_2, r_{12}) / [(s_{12})^{1/2} k_{\rm R}^{2L2+1} F(k_{12}^2, L_2, r_{12})]$

Here s_{12} is the invariant energy squared in the channel 12, k_{12} is the relative momentum of particles 1 and 2 in the teir rest system and r_{12} is the effective radius.

$$A_{tr}^{\alpha}(s) = \frac{a_1^{\alpha} + a_3^{\alpha}\sqrt{s}}{s - a_4^{\alpha}} e^{ia_2^{\alpha}}, \qquad (5)$$

$$A_{2b}^{\beta}(s_i) = \frac{\sqrt{s_i}}{1 - \frac{1}{2}r^{\beta}q^2 a_{pp}^{\beta} + iqa_{pp}^{\beta}q^{2L}/F(q, r^{\beta}, L)}, \quad (6)$$

where multiindex β denotes possible combinations of a kinematical channel *i* and quantum numbers S_2 , L_2 and J_2 , a_{pp}^{β} is a *pp*-scattering length and r^{β} is the effective range of the *pp* system. The F(q, r, L) is the Blatt-Weisskopf form factor (it is equal to 1 for L = 0) and *q* is a relative momentum in the *pp*-system:

$$q = \frac{\sqrt{s_i - 4m_p^2}}{2}$$

Для начальной рр системы были взяты состояния с полным угловым моментом J ≤ 2, и орбитальным моментом L=0,1,2,3,4,5

Для конечного состояния трех частиц мы ограничились орбитальными моментами L₂=0,1, 2 и L' =0,1, 2,3,4,5

Начальные парциальные состояния, дающие наибольшие вклады в реакцию pp→pnπ⁺.

Изовекторные состояния (I=1) ³P₀ 11.3±1.% ³P₁ 24.8±3.% ³P₂ 23.0±5 % ¹D₂ 6.5±1. % ³F₂ 20.1±2.% ^{3F4} 5.13 ±2.% ³Р₂ состояние распадается в три канала Δ(1232)р, Р₁₁(1440)р и (³Р₂)_{pn}π. ³P₁ состояние распадается в $\Delta(1232)$ р, Р11(1440)р и (³Р₁)_{рл} П. ${}^{3}F_{2}$ - в основном в $\Delta(1232)$ р

