Проект ИРИНА (Исследование Радиоактивных Изотопов на Нейтронах) на реакторе ПИК

В. Пантелеев

Направление 5: "Фундаментальные и прикладные исследования с использованием нейтронов" Разработка проекта и создание масс-сепараторного лазерного комплекса ИРИНА на реакторе ПИК для исследования нейтронно-избыточных, экзотических ядер удаленных от полосы в-стабильности и разработка методов получения радионуклидов для медицины.

Современная ISOL (Isotope Separator On-Line) система на пучке протонов

Исследования удаленных ядер:

- Массы ядер
- Радиусы, электромагнитные моменты
- Моды распада
- Фундаментальные взаимодействия
- Астрофизические процессы

Прикладные использования:

• Физика твердого тела

•Получение радионуклидов для медицины

ИРИС (Исследование Радиоактивных Изотопов на Синхроциклотроне) - единственная в России ISOL установка (работает в ПИЯФ с 1975 г.)

использованием ловушек Пеннинга (ЛЭЯ)

Лазерный комплекс на установке ИРИС

Мишень из ²³⁸UC, используемая на м.-с. ИРИС

Прототип совмещенной мишени для установки ИРИНА

Область нейтронно-дефицитных ядер в окрестности магических протонной и нейтронной оболочки Z=82, N=126 представляет особый интерес из-за наблюденной ранее изомерии формы ядер изотопов ртути и измеренного недавно асимметричного деления ядра изотопа ¹⁸⁰TI

Переход в новые области нейтронноизбыточных изотопов и исследование формы ядер изотопов Te, Sb, Sn, In, Cd и Ag (в окрестности оболочки с магическим числом протонов Z=50) с числом нейтронов близким к магическому N=82 в окрестности границы нейтронной устойчивости;

Исследование формы ядер изотопов Ge, Ga, Zn, Cu и Ni (в окрестности оболочки с магическим числом протонов Z=28 и магическим числом нейтронов N=50) с целью изучения влияния на форму ядра оболочечного эффекта;

Исследование хода r-процесса в крайне нейтронно-избыточной области

Проект ИРИНА (Исследование Радиоактивных Изотопов на НейтронАх) на реакторе

Проекты ISOL систем с мишенями из ²³⁵U в канале реактора: установка OSIRIS на реакторе в Студвике (Швеция), проект установки PIAFF на реакторе в Гренобле (Франция), проект установки MAFF на реакторе в Мюнхене (Гарчинг, Германия)

Сечения образования изотопов Rb на пучках различных частиц

Получение на тепловых нейтронах нейтронно-избыточных ядер в районе дважды магических ядер¹³²Sn и ⁷⁸Ni позволяет снизить на несколько порядков вклад соответствующих изобар Cs и Rb по сравнению с получением на протонах

Новый Канал ГЭК-5

Канал ГЭК-5 с мишенным устройством и ионо-оптической системой масс-сепаратора

федеральное государственное бюджетное учреждение «Петербургский Институт Ядерной Физики им. Б.П.Константинова»

188300, г. ГАТЧИНА Ленинградской области, Орлова роша Телефон: (81371) 4 60 25. Телефакс: (81371) 3 60 25. Е-mail: dirátempi.spb.ru ОКПО 02698654, ОГРН 1034701242443, ИНН 4705001850, КПП 470501001

> Директору – Генеральному конструктору ОАО «НИКИЭТ» Ю.Г. Драгунову

Исх. № 500/1-00/56 от 12 марта 2012 года

О проведении оценки стоимости разработки мишенно-ионной (реакторной) части установки «ИРИНА»

Уважаемый Юрий Григорьевич!

Прошу Вашего согласия на проведение оценки стоимости разработки мишенно-ионной (реакторной) части установки «ИРИНА», планируемой к установке канала ГЭК 6-6' реактора ПИК. Оценка также должна включать стоимость модернизации или замены канала ГЭК 6-6'.

Необходимые исходные данные со стороны ПИЯФ будут предоставлены в рабочем порядке.

Директор института

В.М.Самсонов

Тема:	ПИК - ИРИНА		
От:	Руслан Куатбеков <krp@nikiet.ru></krp@nikiet.ru>		
Дата:	Птн, 06 Апр 2012, 10:19		
Кому:	vnp@pnpi.spb.ru		
Копия:	'Никель Кирилл' <nikel@nikiet.ru> (<u>больше</u>)</nikel@nikiet.ru>		
Срочност	Обычное		
ь:			
Настрой ка:	Просмотреть все заголовки Версия для печати Загрузить сообщение на диск Add to Address Book View Message Details		

Разработка ГЭК для установки ИРИНА 13500,00 тыс. руб. без НДС:

Разработка рабочей конструкторской документации ГЭК (взамен 8204.53.36.000и/или 8204.53.69.000), прочностное обоснование нового ГЭК. Разработка технического предложения реакторной части установки ИРИНА (2013 г.)

С уважением, Руслан

Пантелеев В.Н (81371)462-08

28/03 2017 13:16 FAX 2637478 Главному конструктору ИИР национальный АО «НИКИЭТ» ИССЛЕЛОВАТЕЛЬСКИЙ ЦЕНТР «КУРЧАТОВСКИЙ ИНСТИТУТ» И. Т. Третьякову INTHE FOCKOPTICPALMM - POCATOM Федеральное государственное Акционерное общество «Ордена Ленина бюджетное учреждение Паучно-исследовательский и конструкторский институт «Петербургский институт ядерной физики энерготехники имени Н. А. Доллевание (АО «НИКИЭТ») им. Б. П. Константинова» а/я 788, Москна, 101000 (ФГБУ «ПИЯФ» НИЦ «Курчатовский институт») Tenerality: 611569 MOMELIT. Теп. (499) 263-73-88, финс (499) 788-20-52 мкр. Орлова роша, д. 1, г. Гатчина, E-mail: nikiet@nikiet.ru, www.nikiet.ru Ленинградская область, 188300 Тал.: (81371) 4-60-25, факс: (81371) 3-60-25 2.8 MAP 2017 No441-07/ 23 72 3 E-mail: dir@pnpi.nreki.ru Ha >300/1-30/624 --- ot 28.03. 2017 r. OKIIO 02698654, OFPH 1034701242443 ИНН 4705001850, КПП 470501001 22.02.2017 Nº 500/1-30/624 О установке ИРИНА Ha Ne Уважаемый Игорь Товиевич! сообщаю: ФГБУ "ПИЯФ" НИЦ "Курчатовский институт" просит провести оценку

технической возможности замены трубы канала ГЭК 6-6' на трубу максимально возможного диаметра для расположения в данном канале оборудования установки ИРИНА, а также направить ТКП на выполнение данных работ.

Технические детали данной замены предварительно обсуждались в рабочем порядке в конструкторской группе К. А. Никеля.

Заместитель директора по научной работе

В. В. Воронин

Пантелеев В.Н. Тел: 8 (813 71) 4-62-08 АО^НИКИЭТ^

Заместителю директора ФГБУ «ГІИЯФ» ПИЦ «Курчатовский институт» -Вородину В.В. факе: (81371) 3-60-25

Заместителю директора по эксплуатации ядерных установок ΦΓБΥ «ΠИЯΦ» НИЦ «Курчатовский институт» Смольскому С.Л. факс: (813-71) 3-22-41

B.M. Noussencely

2.8 MAP 201 Bopolivin B.B.

Уважаемый Владимир Владимирович!

Рассмотрев Ваш запрос о размещении в реакторе ПИК уставовки ИРИНА

1. Установку целесообразно разместить в капале ГЭК 5-5', так как он не оборудован пиберами.

2. Принципиальная возможность доработки капала ГЭК 5-5' существует.

Минимальный внутренний диаметр дорабатываемого канала составит 210 мм.

4. АО «НИКИЭТ» готово разработать РКД дорабатываемого канала. С учетом сроков энсргетического пуска реактора ПИК разработку РКД возможно выполнить в рамках планируемого договора «Услуги по разработке и изготовлению оборудования...» в срок 6 мссяцев с момсита заключения логовора. Прощу ПИЯР определиться с необходимостью данной работы с учетом изготовления и поставки комплектующих канала.

стантинова» №	Dara & C.05. 2		1
L B.U. KOH	49t	Глаяный конструктор ИИР	Mun
MN	Bx.No	Докелин П. С. (499) 763-04-03	

5

мнститут

инхонфургский

à

∂0001

Расположение оборудования в канале 5-5' и в экспериментальном зале реактора ПИК

Внутренняя труба: мишень-ионный источник, вытягивающий электрод, две фокусирующие линзы. Экспериментальный зал: две горячие камеры, масс-сепаратор с ионными трактами, лентопротяжным устройством и детекторами. Внешний зал: система ловушек PITRAP. Лабораторное помещение 107: лазерная установка. Плотность потока нейтронов на выходе канала на границе биологической защиты реактора (расчеты сделаны М.С. Онегиным)

Спектр нейтронов на выходе канала ГЭК-5.

Диапазон энергийПлотность потока
нейтронов, см-2с-1Тепловые нейтроны,
энергия < 0,625 эВ</td>3,87×1010Быстрые нейтроны,
энергия > 0,1 МэВ2,8×107Все энергии3,91×1010

Канал диаметром 100 мм:

Канал диаметром 260 мм:

Диапазон энергий	Плотность потока нейтронов, см ⁻² с ⁻¹
Тепловые нейтроны, энергия < 0,625 эВ	2,65×10 ¹¹
Быстрые нейтроны, энергия > 0,1 МэВ	2,73×10 ⁸
Все энергии	2,70×10 ¹¹

Энерговыделение на вставной трубе в канале ГЭК 5-5'

Вставная труба из алюминия САВ-6. При расходе 1.5 м³/час температура охлаждающей воды: вход - 55 °С выход -75 °С Расчет Г.А. Кирсанова

Нагрев источника-мишени при напряжении на вытягивающем электроде 30 кВ

Использование ISOL комплекса ИРИНА на канале реактора ПИК с потоком нейтронов на мишени до 5×10¹³ н/см²сек обеспечит самые высокие в мире выходы нейтронно-избыточных ядер, что позволит значительно расширить область исследуемых изотопов, в частности, продвинуться в малоисследованную область изотопов с максимальным избытком нейтронов (астрофизические аспекты исследований).

Использование ионной ловушки PITRAP на одном из ионных трактов установки ИРИНА позволит измерять с высокой точностью (несколько кэВ) массы большого массива ядер, удаленных от полосы бета-стабильности.

С использованием высокочувствительного метода резонансной лазерноионизационной спектроскопии будут проводиться измерения зарядовых радиусов и электромагнитных моментов большого числа ядер в наиболее интересных для ядерной физики областях дважды магических ядер ⁷⁸Ni и ¹³²Sn. Кроме того, на радиоизотопном комплексе ИРИНА будут проводиться эксперименты по получению сверхчистых радионуклидов для медицинского применения.

Проект установки PIAFE на реакторе в Гренобле (Франция)

Fig. 1. Overview of Phase I in the ILL experimental reactor hall.

Мишенное устройство установки OSIRIS на реакторе в Студвике (Швеция)

Мишень из карбида урана с электростатической системой вытяжки и формирования ионного пучка (PIAFE)

Мишень из карбида урана с вытягивающим электродом для установки MAFF на реакторе в Мюнхене (Гарчинг, Германия)

Создание приборной базы реакторного комплекса ПИК

Зал горизонтальных каналов (8шт.)

- np-dy -Установка «Бета-распад нейтрона»
- IRINA Масс-сепараторный лазерно-ядерный комплекс ИРИНА
- **n4** Установка «Нейтрино» (расположена в подреакторном пространстве)

Из доклада директора ОНИ В.В. Воронина на Уч. Сов. ПИЯФ

Сравнение расчетных выходов (в мишени) нуклидов, крайне удаленных от

линии бета-стабильности, для установок ИРИНА и SPIRAL2

			IRIN	SPIRAL2	
Nuclide	Z	T1/2 sec	Cum.Yield	Cum.Yield	
⁷⁴ Ni	28	0,9	4,58E+06	2,75E+05	
⁷⁸ Cu	29	0,342	1,09E+07	1,15E+06	
⁸⁰ Zn	30	0,545	2,42E+08	2,64E+09	
84Ga	31	0,085	1,11E+10	1,24E+07	
⁸⁵ Ge	32	0,535	2,13E+09	4,09E+08	
⁸⁷ As	33	0,49	5,27E+10	8,60E+09	
⁹¹ Se	34	0,27	6,66E+08	2,71E+08	
⁹³ Br	35	0,102	3,09E+09	3,35E+09	
⁹⁵ Kr	36	0,78	7,19E+09	4,45E+09	
¹⁰⁰ Rb	37	0,051	3,48E+10	1,79E+07	Для больші
¹⁰² Sr	38	0,069	1,73E+08	9,02E+07	нейтронно-
102Y	39	0,3	2,68E+11	1,02E+10	выходы на
¹²⁷ Ag	47	0,109	1,58E+02	1,/1E+01	чем на уста
¹³³ In	49	0,18	1,/1E+08	1,06E+08	которая, со
¹³⁴ Sn	50	1,12	1,//E+10	2,62E+09	оценкам, бу
¹³⁰ SD	51	0,82	1,15E+10	3,45E+09	выходы ней
¹³⁰ Ie	52	1,4	6,62E+10	7,96E+09	ИЗОТОПОВ
141]	53	0,43	4,07E+10	3,69E+09	
¹⁴⁵ Xe	54	0,9	/,16E+0/	1,87E+08	
¹⁴⁸ CS	55	0,14	1,31E+0/	3,53E+07	
150Ba	56	0,3	5,02E+07	7,82E+07	
¹⁵⁰ La	57	0,51	1,05E+10	3,15E+09	

Для большинства крайне удаленных нейтронно-избыточных изотопов выходы на установке ИРИНА выше, чем на установке SPIRAL2, которая, согласно сегодняшним оценкам, будет иметь самые высокие выходы нейтронно-избыточных изотопов

Расстояние от центра канала, см	Плотность невозмущенного потока на оси канала, см ⁻² с ⁻¹	Энерговыделение в урановой мишени весом 3.5 грамм (обогащение 95%), Вт
0	1.09.1014	2730
10	1.06.1014	
20	1.00.1014	
30	9.2·10 ¹³	
40	8.2.1013	
50	7.05.1013	1790
60	5.84·10 ¹³	
70	4.53·10 ¹³	
80	3.21.1013	
90	1.95.1013	
100	1.05.1013	
110	5.95·10 ¹²	

Результаты расчетов для канала ГЭК 5-5'

Изготовление прототипа трубы-вкладыша с мишенной ионо-оптической системой (экспериментальный зал ИРИС)

Расчетные выходы долгоживущих «медицинских» изотопов на масс-сепараторе ИРИНА

Нуклид	T _{1/2}	ISOLDE (1µA, 50g/cm²)	ИРИНа (3*10 ¹³ n/cm ² s, 4g)
⁸⁹ Sr (Z=38)	50.5 d	-	10 ¹¹
⁹¹ Sr	9.5 h	-	10 ¹¹
⁹⁰ Y (Z=39)	2.67 d	-	10 ¹¹
⁹¹ Y	58.5 d	-	10 ¹¹
¹⁴² Pr (Z=59)	19.1 h	1*10 ⁷	~10 ¹⁰
¹⁴³ Pr	13.6 d	-	10 ¹¹
¹⁴⁹ Pm (Z=61)	53.08 h	4.3*10 ⁵	10 ¹⁰
¹⁵⁰ Pm	2.68 h	1*10 ⁵	~10 ⁹
¹⁵¹ Pm	28.4 h	2*10 ⁶	5*10 ⁹
¹⁵⁶ Eu (Z=63)	15.2 d	1.3*10 ⁵	~ 10 ⁹

Изменения зарядовых радиусов ядер в области свинца, измеренные методом лазерной спектроскопии в лазерном ионном источнике ISOLDE+IRIS (кр. и зел. точки)

С использованием метода лазерного ионного источника, разработанного в ПИЯФ (ИРИС), получают изотопы более 30 элементов Периодической системы.

Метод лазерного ионного источника в настоящее время используется в 6 ведущих ISOL лабораториях, при этом наиболее интенсивно на установке ISOLDE (CERN), ИРИС (ПИЯФ), ISAC (TRIUMF, Canada).

Лазерный ионный источник

Ультрафиолетовый и зеленый лазерные лучи, сфокусированные в объем лазерного ионного источника

Установка ИРИНА (Исследование Радиоактивных Изотопов на нейтронАх) на реакторе ПИК

Мишень высокообогащенный ²³⁵U.

Масса - 3-4 г.

Нейтронный поток через мишень (3-5)×10¹³ н/сек.см²

Выделяемая мощность -

2.5 - 3 квт.

Комплекс ионных ловушек на одном из трактов масс-сепаратора позволит измерять массы удаленных ядер с точностью несколько кэВ

Выходы нейтронно – избыточных ядер на коллекторе масс-сепаратора

Плотность потока нейтронов на выходе канала на границе биологической защиты реактора (расчеты сделаны М.С. Онегиным)

Спектр нейтронов на выходе канала ГЭК-6.

Диапазон энергий	Плотность потока нейтронов, см ⁻² с ⁻¹
Тепловые нейтроны, энергия < 0,625 эВ	3,87×10 ¹⁰
Быстрые нейтроны, энергия > 0,1 МэВ	2,8 ×10 ⁷
Все энергии	3,91×10 ¹⁰

Канал диаметром 100 мм:

Канал диаметром 260 мм:

Диапазон энергий	Плотность потока нейтронов, см ⁻² с ⁻¹
Тепловые нейтроны, энергия < 0,625 эВ	2,65×10 ¹¹
Быстрые нейтроны, энергия > 0,1 МэВ	2,73×10 ⁸
Все энергии	2,70 ×10 ¹¹

