Статус установки JYFLTRAP и текущие эксперименты

Дмитрий Нестеренко

Циклотронная лаборатория Университа Ювяскюля, г. Ювяскюля, Финляндия

Семинар ОФВЭ, ПИЯФ

31.10.2017

План доклада

- ≻ Общее описание установки
- Методы очистки ионного пучка и измерений масс в ловушке Пеннинга на JYFLTRAP
- ≻ Эксперименты на JYFLTRAP

Расположение IGISOL-4 facility (Ion Guide Isotope Separator On-Line)

Циклотроны

K130

MCC30/15

Ускоряемые элементы: p – Хе Энергия: E_{max} = 130 Q²/A MeV

Энергия р: 18–30 МэВ Энергия d: 9 – 15 МэВ Ток пучка: 200/62 µА

Использование:

- IGISOL
- Наработка радиоизотопов

Доступные пучки ионов

≻ Офлайн

Ионные источники перед банчером:_

– Поверхностно-ионизационный источник (ионы стабильных изотопов Cs, Rb, K)

– Лазерный источник (ионы от твердых мишеней – металлы, оксиды, …)

<u>Ионные источники на втором этаже (перед дипольным</u> <u>магнитом)</u>:

- Поверхностно-ионизационный источник (ионы стабильных изотопов Cs, Rb, K)
- Газоразрядный ионный источник (металлы, порошки, газы)
- > Онлайн
 - Продукты деления U, Th с использованием протонных или дейтронных пучков
 - Продукты реакций слияния-испарения (лёгкие и тяжёлые ионы)

Получение продуктов реакций (Ion Guide technique)

Методы получения нуклидов на IGISOL:

- Реакции слияния испарения с лёгкими ионами
- Реакции слияния испарения с тяжёлыми ионами
- Деление U/Th p- и d-пучками

Ловушки Пеннинга JYFLTRAP

аксиальное движение

модифицированное циклотронное движение

магнетронное движение

аксиальное и

Радиочастотное возбуждение ионов в ловушке

Ионы в центре ловушки

Дипольное РЧ-возбуждение на собственной частоте движения ионовувеличение радиуса движения

Квадрупольное РЧ-возбуждение на собственной циклотронной частоте ионов-конвертация радиальных движений

Подготовительная ловушка Пеннинга: масс-селективное охлаждение в буферном газе

Измерительная ловушка: времяпролётный ионный циклотронный резонанс (ToF-ICR)

Рамзей возбуждение

Рамзей очистка пучка

+ 2×200 мс для охлаждения

Фазовый метод (Phase-Imaging Ion-Cyclotron resonance)

Фазовый метод (Phase-Imaging Ion-Cyclotron resonance)

Сравнение фазового метода с времяпролётным

Полнее высокая точность определения циклотронной

частоты: частоты: $\frac{(\delta v_c)_{ToF-ICR}}{(\delta v_c)_{PI-ICR}} \approx 1.6\pi \approx 5$ \diamond Более высокая разрешающая способность: \diamond Более высокая разрешающая способность: (=1 mm, = 50 µm)

 $\langle \frac{R_{PI-ICR}}{R_{FOF-ICR}} B \widetilde{B} c \frac{\pi}{9.8} \frac{r_{+}}{2.4} \widetilde{\gamma} B c T B M re \overline{I}_{B} H O C T B, \Delta r_{+} = 50 \ \mu m \rangle$

◊ Более высокая чувствительность

Фазовый метод на JYFLTRAP

Использование фазового метода для определения изомерного состояния

Мульти-времяпролётный (Multi-reflection time-of-flight) масс-анализатор на JYFLTRAP

Мульти-времяпролётный (Multi-reflection time-of-flight) масс-анализатор на JYFLTRAP

- Масс сепаратор/спектрометр
- Более быстрый временной цикл измерения, чем в ловушках Пеннинга
- Способность проводить измерения с более низкими отношениями хороших ионов к плохим
- Хорошая разрешающая способность (до R ≈ 10⁵) неплохая точность для измерений масс

Измерения масс на JYFLTRAP

массы ядер

$$M(Z,N) = Z \cdot M_p + N \cdot M_n - B(Z,N)/c^2$$

энергии связи нуклонов

 Астрофизика ((г-и пр-процесс, точки ожидания)
Нейпринная физика ((Q-величины) для - Зи ипрецессов)
Изучение структуры ядер (оболочки, деформации, парные энергии, массовые модели, энергии возбуждения...)

Измерение масс нейтроноизбыточных изотопов редкоземельных элементов

¹⁵⁶Nd, ^{<u>158}Nd</u>, ¹⁵⁸Pm, ^{<u>160}Pm</u>, ^{<u>162}Sm</u>, ¹⁶²Eu, ¹⁶³Eu, ¹⁶³Gd, ^{<u>164</sub>Gd</u>, ^{<u>165</sub>Gd</u>, ^{<u>166</u>Gd</sub>, ¹⁶⁴Tb}}}</sup></sup></sup>

<u>¹⁵⁹Nd</u>, <u>¹⁶¹Pm</u>, <u>¹⁶³Sm</u>, <u>¹⁶⁴Eu</u>, <u>¹⁶⁵Eu</u>, <u>¹⁶⁷Gd</u>, <u>¹⁶⁵Tb</u>, <u>¹⁶⁶Tb</u>, <u>¹⁶⁷Tb</u>, <u>¹⁶⁸Tb</u> – измерены в октябре 2017 г.

Результаты измерений масс нейтроноизбыточных изотопов редкоземельных элементов

- Энергии отделения нейтрона меньше при N=98, 100 и 102, чем предсказывалось теоретическими моделями
- Существование нейтронной деформированной оболочки N=100 не подтвердилось

Массы для изобарического квинтета А=52, Т=2

Ураннение wacc для изобарического мультиплета (IMME): $M(A, T, T_z) = a(A, T) + a(A, T)T_z + c(A, T)T_z^2$

Необходимы:

- Массы основных состояний ядер
- Энергии изобарических аналоговых состояния (IAS)

Массы ⁵²Со и ⁵²Со^т: результаты

 $Ex(^{52}Mn) = 377.749(5) \kappa B$

Первое измерение ⁵²Со в ловушке Пеннинга

• ⁵²Fe(p,3n)⁵²Co @ 50 МэВ: σ ≈ 3 мкб (TALYS)

	МЕ(⁵² Со ^m), кэВ	МЕ(⁵² Со), кэВ
JYFLTRAP (D.A. Nesterenko, et al., J. Phys. G, 44, (2017) 065103)	-34331.6(66)	-34958(11)
CSRe (X. Xu, et al., PRL 117, 182503 (2016))	-34361(8) 3σ	-33974(10) 1 σ
AME2012/NUBASE2012	-33990(200)#	-33610(220)#

JYFLTRAP: Ex(⁵²Co) = 374(13) кэВ

CSRe: Ex(⁵²Co) = 387(13) кэВ

Результаты измерений с ⁵²Со: схема уровней β⁺-распада 52Ni

Ранее при изучении распада ⁵²Ni было предположено, что T=2, J^π=0⁺ IAS состояние распадается через βр и βγ C. Dossat et al., Nucl. Phys. A 792 (2007) 18; S. Orrigo et al., PRC 93, 044336 (2016)

(D.A. Nesterenko, et al., J. Phys. G, 44, (2017) 065103)

Проверка уравнения для изобарического мультиплета (IMME) при A = 52

Используя измеренные на JYFLTRAP более точные значения масс ⁵²Co, ⁵²Fe, ⁵²Mn (+ табличные массы ⁵²Cr, ⁵²Ni и E*(⁵²Fe), E*(⁵²Mn)) нашли коэффициенты для IMME

⁵²Со и гр-процесс

Отношение скорости фоторасщепления к скорости захвата протона

В ⁵²Со протоны более связаны, в ⁵³Ni протоны менее связаны чем предсказывалось AME2012

Q-величины для β^{-} и $\beta^{-}\beta^{-}$ распадов ⁹⁶Zr

[1] J. Argyriades et al., Nucl. Phys. A 847, 168 (2010);
[2] M. E. Wieser and J. R. De Laeter, PRC 64, 024308 (2001);
[3] A. S. Barabash et al, J. Phys. G 22, 487 (1996);
[4] H. Heiskanen et al, J. Phys. G 34, 837 (2007).

 $(T_{1/2}^{\ \beta})^{-1} \propto Q^{13}$

Q-величины для β^{-} и $\beta^{-}\beta^{-}$ распадов ⁹⁶Zr

 ${}^{96}Zr + p \rightarrow {}^{96}Nb(T_{1/2}=23.35h) + n$

	JYFLTRAP (Alanssari et al., PRL 116, 072501 (2016))	AME(2012)	JYFLTRAP – AME2012	LEBIT (K. Gulyuz et al., PRC 91, 055501 (2015))
O kaB	3356.097(86)	3349(2)	7.1(2)	3355.85(15)
, κου	163.96 (13)	162(4)	2(4)	

 Q_{g} , кэВ Новные расчеты ((оболочечная модель)) с учётом измеренной Q_{g} -величины: Ле $f_{2}^{\beta} = 11 \times 10^{19}$ лет. Пересчёт QPRA значения показал, что новая Q_{g} -величина вносит только

Расхождение в периодах полураспада (NEMO-3 и гео-хим.) не было устранено (Необходимо новое измерение $T_{1/2}^{\ \ \ \beta}$)

Измерение разницы масс ⁷¹Ge – ⁷¹Ga

GALLEX, SAGE детекторы: 71 Ga(ν_e , e^-) 71 Ge

⁷¹Ga-аномалия: калибровка детекторов с помощью ⁵¹Cr и ³⁷Ar источниками показала меньший поток нейтрино, по сравнению с расчётным

Необходито точно знать Q-величину реакции, чтобы проверить сечение реакции ($f t \propto Q^2$)

Q = 232.69(15) кэВ – использовалась в расчётах (J. Bahcall, PRC 56, 3391 (1997))

Q = 233.5 (12) КЭВ — ИЗМЕРЕНО НА TITAN (D. Frekers et al., Phys. Lett. В 722, 233 (2013))

Q = 232.443 (93) кэВ – измерено на JYFLTRAP (M. Alanssari et al., Int. J. Mass Spec. 406, 1 (2016))

в 12 раз более точное значение!

 $(^{71}\text{Ga} + p \rightarrow ^{71}\text{Ge}(T_{1/2}=11.43\text{d}) + n)$

Новое значение Q-величины не устранило аномалию

Благодарности

Группа IGISOL:

L. Canete T. Eronen S. Geldhof A. Jokinen A. Kankainen I.D. Moore D.A. Nesterenko H. Penttilä I. Pohjolainen A. de Roubin M. Reponen S. Rinta-Antila A. Takkinen M. Vilen J. Äystö

