
Meter is the path of length that light passes in vacuum for the time interval
equal to 1/299752498 s. The speed of light is equal to 299792458 m/s (exactly).
(1/10 000 000 part of meridian from the equator to the North Pole)

Second is defined by using the Cesium clock (laser). Second is the time equal
to 9192631770 periods of radiation corresponding to transition between two hyperfine
levels of the 133Cs ground state atom. (1/(24 · 60 · 60) part of the Sun day)

Electric voltage U may be measured by using the nonstationary Josepson effect,
where hω = 2e · U , at that ω is measured by using the Cesium clock.

Electrical resistance R should be expressed in the units of quantum electrical
resistance RK by using the quantum Hall effect; RK = h/e2 = 25812.807557(18) Ω
is the von Kleitzing constant. In the Hall effect R = Utrans/Ilong.

... etc.
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ISOMERIC STATE IN 229Th AND IT‘S POPULATION IN THE
REACTION OF THE COULOMB EXCITATION

V. I. Isakov
Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, 188300 Gatchina,

Russia

On the basis of detailed analysis of γ-transitions in 229Th attendant α-decay of 233U, it
was established the existence in the daughter nuclei 229Th of the low-lying level with the
excitation energy of only a few eV. This is the most low-lying state known by now. The
next one is the level 1/2+ in 235U, with the excitation energy equal to 76.5 eV. The latest
experimental data point to the value of the excitation energy in 229

90Th139 equal to ∼ 7.6
eV. Not long ago, conversion electrons arising from the decay of this level were also detected,
their energies were not defined. In this way, it was proved that this level really exists, and it‘s
energy is above the threshold of ionization of neutral atom of Th, which is equal to ∼ 6.1
eV. Together, the half-life of this level equal to 7(±1) µs was measured recently. However,
the energy of this state is not yet measured in the direct experiment.
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(5/2+), 1.50 d

(3/2)+, 58 min

(3/2+), 62.7 min

5/2+, 4.0 min

+ 80%  20%

+ 99.52%
 0.48%

229
88Ra141

229
89Ac140

229
90Th139

229
91Pa138

229
92U137

 100 %

5/2+, 1.59 105 y

233
92U141

(5/2+) 36.2 min

233
93Np140

233
94Pu139

 100 %

 < 0.1 %

 0.12 %

Decay chains leading 
         to 229

90Th139

 > 99,9%

  98.8 %
233

91Pa142

233
90Th143

- 100%

_ 100%

- 100%

1/2+, 21.8 min

3/2--, 27d

20.9 min

5/2+, 7880 y
Fig.1

Figure 1: Chain of decays leading to229Th
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9/2+,  97.1  keV

7/2+,  42.4 keV

5/2+,  gr.st.

(7/2+), 71.8  keV

(5/2+), 29.2 keV

(3/2+, 0.0076 keV)

229
90Th139

Band [N,n
z
, =633] Band [N,n

z
, =631]

 
Q=+4.3(9) barn            =0.33(7)   

B(E2)= 332(8) W.u.

B(E2)=170(30)W.u.
B(M1)=0.0076(12)W.u.

B(E2)=92(4)W.u.
B(E2)=6.2(8)W.u.

B(M1)=0.0117(14)W.u.
. .

Experimental data are from E. Browne and J.K. Tuli, NDS  v. 109, 2657 (2008).
Data on the Coulomb excitation of the 9/2+, 97.1 and 7/2+, 42.4 keV levels were
also obtained in the paper of S.J. Goldstein et.al. Phys.Rev. C40, 2793 (1989).  

n.m.

1 W.u.(E2)=83.2 e2Fm4,
1 W.u.(M1)=1.79 (n.m.)2

 = 0.24(1)

=0.24(1)

=0.18(2)

B(M1)=0.011(4)W.u.

.

Red: data from the CE
Blue: data from decay

B(E2)=65(7)W.u.

B(E2)=300(160)W.u.  = 0.23(7)

=0.20(1)

?

= 0.22(1)

Fig.2

Figure 2: Low-lying levels in 229Th
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The wave function of the axially-symmetric odd nuclei in the framework of the unified model reads as

Ψ
J
MK =

√
2J + 1

16π2

[
D

J
MK(θi) · χK + D

J
M−K(θi) · χJ

K

]
. (1)

Second term in (1) provides symmetry of the wave function to reflection relatively the plane orthogonal to the

symmetry axis, while

χK =
∑

N`Λs

xK(N`Λs)|N`Λs〉 , χJ
K =

∑

N`Λs

(−1)
J−`−1/2

xK(N`Λs)|N`− Λ− s〉 . (2)

In (1) and (2) χK are Nilsson orbitals, that represent the decomposition of the single-particle functions of the

axially-symmetric deformed potential over the spherical-symmetric functions, Λ and s are projections of orbital

moment and spin on the symmetry axis, K = Λ + s.

We define reduced transition matrix elements and reduced transition rates by the relations

〈J2M2|m̂(λµ)|J1M1〉 = (−1)
J2−M2

(
J2 λ J1

−M2 µ M1

)
〈J2‖m̂(λ)‖J1〉 ,

〈J2‖m̂(λ)‖J1〉 = (−1)
J2−J1〈J1‖m̂(λ)‖J2〉 . (3)

B(λ; J1 → J2) =
〈J2‖m̂(λ)‖J1〉2

2J1 + 1
, B(λ; J1 → J2) =

2J2 + 1

2J1 + 1
B(λ; J2 → J1) . (4)
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For E2 transitions we have

m̂(E2, core)
2
µ = D

2
µ0(θi) ·

3

4π
ZR

2 ·β|e|, while m̂(E2, s.p.)
2
µ =

∑
ν

D
2
µν(θi) ·m̂(E2, intr.)

2
ν . (5)

Then, we obtain

〈ΨJ2
K2
‖m̂(E2, core) + m̂(E2, s.p.)‖ΨJ1

K1
〉 =

= (−1)
J2−J1

√
(2J1 + 1) C

J2K2
20 J1K1

δ(K1, K2)δ(α1, α2)
3

4π
|e| · ZR

2 · β +

+ (−1)
J2−J1

√
5(2J1 + 1)

4π
·

∑

N`Λ(1,2)

xK2
(N2`2Λ2s2) xK1

(N1`1Λ1s1) .(uK1
uK2

− vK1
vK2

) ×

×
√

2`1 + 1

2`2 + 1
C

`20

20`10

[
δ(s1, s2)C

J2K2
2(K2−K1)J1K1

C
`2Λ2
2(K2−K1)`1Λ1

+

+ δ(s1,−s2)(−1)
J2−`2−1/2

C
J2−K2
2(−K2−K1)J1K1

C
`2−Λ2
2(−K2−K1)`1Λ1

]
· eeff · 〈2|r2|1〉 . (6)

In (6) u and v are the coefficients of the Bogoliubov transformation, that accounts the superfluid correlations,

while eeff is the effective quadrupole charge for the odd particle.
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Quadrupole moment of state is expressed via the reduced E2 matrix elements by the relation

Q2(J) =

√
16π J(2J − 1)

5(J + 1)(2J + 1)(2J + 3)
〈 J‖m̂(E2)‖J 〉 . (7)

Consider now M1 transitions. Because of the particle-hole polarization arising from the spin-dependent

interactions between the nucleons, “bare” values of gyromagnetic ratios in nuclei renormalize. In addition, this

polarization leads to the appearance of the additional tensor term in the single-particle M1 operator which

“opens” l-forbidden transitions in spherical nuclei. In this way, the M1 transition operator in our case reads as

m̂(M1)
1
µ =

√
3

4π
µN

[
gRĴ + (g` − gR)ˆ̀+ (gs − gR)ŝ + δµ̂(M1, tens.)

]1

µ

, (8)

where δµ̂(M1, tens.)
1
µ = κr

2
[Y2 ⊗ ŝ]

1
µ · τ3 . (9)

In (9) τ3 = +1 for neutrons (n) and τ3 = −1 for protons (p); κ = −0.031 fm−2; g`(p) ≈ 1.1,

g`(n) ≈ 0.0, gs(p) = 3.79, gs(n) = −2.04, gR = Z/A = 90/229 = 0.393. The values of parameters

gl, gs and κ were defined by us before from the description of magnetic moments as well as l-allowed and

l-forbidden M1 transition rates in spherical nuclei, both near and far from the closed shells. As a result, we

obtain the formula for the reduced M1 transition matrix element:

〈ΨJ2
K2
‖m̂(M1, core) + m̂(M1, s.p.)‖ΨJ1

K1
〉 =
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= gR µN δ(K1, K2)δ(J1, J2)δ(α1, α2)

√
3J1(J1 + 1)(2J1 + 1)

4π
+

+ (−1)
J2−J1

√
3(2J1 + 1)

4π
µN

∑

N`Λs(1,2)

xK2
(N2`2Λ2s2)xK1

(N1`1Λ1s1) .(uK1uK2 + vK1
vK2

)×

×


(g` − gR)

√
`1(`1 + 1) δ(n1, n2)δ(`1, `2)

[
δ(s1, s2)C

J2K2
1(K2−K1)J1K1

×

× C
`2Λ2
1(K2−K1)`1Λ1

+ δ(s1 − s2)(−1)
J2−`2−1/2

C
J2−K2
1(−K2−K2)J1K1

C
`2−Λ2
1(−K2−K1)`1Λ1

]
+

+ (gs − gR)

√
3

2
δ(n1, n2)δ(`1`2)

[
δ(Λ1, Λ2)C

J2K2
1(K2−K1)J1K1

C
1/2 s2
1(K2−K1)1/2 s1

+

+ δ(Λ1,−Λ2)(−1)
J2−`2−1/2

C
J2−K2
1(−K2−K1)J1K1

C
1/2−s2
1(−K2−K1)1/2 s1

]
− (10)

− κ〈2|r2|1〉
[
C

J2K2
1(K2−K1)J1K1

〈`2Λ21/2 s2|[Y2 ⊗ ŝ]
1
(K2−K1) |`1Λ11/2 s1〉 +

+(−1)
J2−`2−1/2

C
J2−K2
1(−K2−K1)J1K1

〈`2 − Λ21/2− s2|[Y2 ⊗ ŝ]
1
(−K2−K1)|`1Λ11/2 s1〉

]

.
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Here, K1 = Λ1 + s1, K2 = Λ2 + s2 , while

〈 `2Λ21/2 s2|[Y2 ⊗ ŝ]
1
µ |`1Λ11/2 s1] 〉 =

3

2

√
5(2`1 + 1)

2π
C

`20

`10 2 0 ×

×
∑

j1j2

√
(2j1 + 1)C

j2K2
j1K11µC

j2K2
`2Λ21/2s2

C
j1K1
`1Λ11/2s1





`2 1/2 j2

`1 1/2 j1

2 1 1



 , µ = Λ2 + s2 − Λ1 − s1.(11)

Magnetic moments of states are defined by the relation

µJ =

√
4πJ

3(J + 1)(2J + 1)
〈 J‖m̂(M1)‖J 〉 . (12)

For the E2 transitions between the states of the same rotational band, we may in formula (6) take into

account only collective part of the matrix element, as the single-particle one gives only a small contribution.

Then, we have formulas for the quadrupole moments of states and for the transition rates, where the result

depends only on the deformation parameter β and the entering values of J and K:
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Q2(J, K) =
3K2 − J(J + 1)

(J + 1)(2J + 3)
Q0; Q2(K = J) =

J(2J − 1)

(J + 1)(2J + 3)
Q0 ; Q0 =

3√
5π
|e|ZR

2 · β.

(13)

B(E2; J + 1, K → J, K) =
3K2(J + 1 + K)(J + 1−K)

J(J + 1)(J + 2)(2J + 3)
· 5

16π
Q

2
0 , (14)

B(E2; J+2, K → J, K) =
3(J + 2 + K)(J + 1 + K)(J + 2−K)(J + 1−K)

(2J + 2)(2J + 3)(J + 2)(2J + 5)
· 5

16π
Q

2
0 . (15)

By using experimental data shown in Fig.2 and formulas (13)–(15), one can easily define the magnitude of

the deformation parameter β which average value turns out to be β ≈ 0.22. This is close to the magnitude

of β, that corresponds to maximal value of the binding energy B in 229Th obtained in calculations, which were

performed in the Hartree–Fock–Bogoliubov approach with the Gogny interaction. This value of β was used by

us in our calculations that involve the “intrinsic” function χ. Mention, that both collective and single-particle

parts in the M1 transition matrix element (10) give comparable contributions even in case of transitions within

the same rotational band.

Consider now transitions between the states of different bands |(J1, J
′
1)K1〉 → |(J2, J ‘

2)K2〉, where the

initial as well as final states have different values of (J, J ‘), but the same values of K. We see from formula

(6) that in case of the E2-transitions matrix element contains the multiple (uK1
uK2

− vK1
vK2

), which value
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is very sensitive to small variation of the single-particle scheme, especially when the entering single-particle

orbitals are close to the Fermi level. This is just the case under consideration. In addition, the value of

the effective quadrupole charge eeff is rather indefinite here, as it is not clear, what part of the quadrupole

transition strength should be included in the single-particle mode after taking into account rotation of the core

in the obvious way. Thus, direct calculations of the E2 transition matrix elements are not trustworthy here.

However, one can easily see from formulas (6) and (10), that if the multipolarity of radiation λ satisfies the

condition K1 + K2 > λ, as it takes place if we consider E2 and M1 trasitions between the bands [633] and

[631], then we have the relation

B(λ; J
′
1K1 → J

′
2K2) =

[C
J′2K2

λ(K2−K1)J′1K1
]2

[C
J2K2
λ(K2−K1)J1K1

]2
B(λ; J1K1 → J2K2). (16)

As we know from the experiment the value of B(E2; J1 = 9/2, K1 = 5/2 → J2 = 5/2, K2 = 3/2)

= 6.2(8) W.u., we can define in this way all interband E2-transition matrix elements.

The situation is different in case of M1 transitions. Here, both collective and single-particle parts of the

M1 transition matrix element (10) give comparable contributions even in cases of transitions within the same

rotational band. In this case, multiple (uK1
uK2

+ vK1
vK2

) is close to unity, while the values of gs and κ

are known. Thus, calculations of M1 transition matrix elements were performed in the obvious way, both for

interband transitions and for transitions within the same band.
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Table 1: Reduced transition rates for the interband E2 and M1 transitions between the low-lying

levels of the bands [N1nz(1)Λ1] = [633] and [N2nz(2)Λ2] = [631] in 229Th. Calculations of the

E2 transition rates, shown in the W.u., were based on formula (16), where the experimental value

of B(E2; J1 = 9/2 K1 = 5/2 [633] → J2 = 5/2 K2 = 3/2 [631]) = 6.2(8) was used as the

normalization factor. Here, W.u.(E2) =83.2 e2fm4. Results on the B(M1) values are shown in the units

of µ2
N (1 W.u.(M1) = 1.79 µ2

N), and they were obtained by calculations basing on formula (10) with

β = 0.2, gs(n, eff) = −2, 04 and κ = −0.031 fm−2.

E, M(λ) J1 K1 J2 K2 B(1 → 2) E, M(λ) J1 K1 J2 K2 B(1 → 2)

E2 9/2 3/2 5/2 5/2 0.53 E2 3/2 3/2 5/2 5/2 8.0

E2 9/2 3/2 7/2 5/2 4.6 M1 9/2 3/2 7/2 5/2 0.00072

E2 9/2 3/2 9/2 5/2 3.9 M1 9/2 3/2 9/2 5/2 0.00460

E2 9/2 5/2 5/2 3/2 6.2 [6.2(8)] M1 9/2 5/2 7/2 3/2 0.00506 [0.0209(25)]

E2 9/2 5/2 7/2 3/2 0.11 M1 7/2 3/2 5/2 5/2 0.00039

E2 7/2 3/2 5/2 5/2 3.3 M1 7/2 3/2 7/2 5/2 0.00413

E2 7/2 3/2 7/2 5/2 5.7 M1 7/2 5/2 5/2 3/2 0.00581

E2 7/2 5/2 3/2 3/2 5.3 M1 5/2 3/2 5/2 5/2 0.00310

E2 7/2 5/2 5/2 3/2 0.22 M1 3/2 3/2 5/2 5/2 0.01080

E2 5/2 3/2 5/2 5/2 8.0
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Table 2: Reduced E2 and M1 transition rates between the levels inside the K = 5/2 and K = 3/2

bands. Here, the B(E2) values are in the Weisskopf units and were calculated by using β = 0.22. Numbers

in square brackets show experimental results. The M1 rates are in the units of µ2
N , and they were calculated

by using gs(n, eff) = −2.04 and κ = −0.031 fm−2.

E, M(λ) J1 K1 J2 K2 B(1 → 2) E, M(λ) J1 K1 J2 K2 B(1 → 2)

E2 9/2 3/2 5/2 3/2 167 E2 5/2 3/2 3/2 3/2 267

E2 9/2 3/2 7/2 3/2 109 M1 9/2 3/2 7/2 3/2 0.0583

E2 9/2 5/2 5/2 5/2 78 [85(4)] M1 9/2 5/2 7/2 5/2 0.0386 [0.0136(21)]

E2 9/2 5/2 7/2 5/2 236 [170(30)] M1 7/2 3/2 5/2 3/2 0.0521

E2 7/2 3/2 3/2 3/2 111 M1 7/2 5/2 5/2 5/2 0.0266 [0.0197(72)]

E2 7/2 3/2 5/2 3/2 167 M1 5/2 3/2 3/2 3/2 0.0389

E2 7/2 5/2 5/2 5/2 279 [330(8)]

Table 3: Electric quadrupole and magnetic dipole moments of the lowest states of 229Th. Here, by calculation

of quadrupole moments we used averaged value of β =0.22, while by calculation of magnetic moments we

used β = 0.2, gs(n, eff) = −2.04 and κ = −0.031 fm−2.

Quantity(J , K) Exp. Calc. Quantity(J , K) Exp. Calc.

Q2(5/2 , 5/2) +4.3(9) barn +2.9 barn Q2(3/2 , 3/2) – +1.6 barn

µ(5/2 , 5/2) +0.46(4) µN +0.47 µN µ(3/2 , 3/2) – +0.12 µN
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By using data on transition rates shown in Table 1, B(M1; 3/2, 3/2 → 5/2, 5/2) = 0.0108 µ2
N and

B(E2; 3/2, 3/2 → 5/2, 5/2) = 8.0 W.u., and the values of the conversion coefficients for the 0.0076 keV

γ-transition (private communication of M.B. Trzhaskovskaya), we find the half-lives for this transition equal to

T1/2(M1) = 5.9 · 10−6 s and T1/2(E2) = 2.7 · 10−3 s (including electron conversion). Experimental value

of T1/2 is 7± 1 · 10−6 s. Here, conversion coefficients are very large: αM1
tot (0.0076 keV) ≈ 1.4 · 109 and

αE2
tot(0.0076 keV) ≈ 1.2 · 1016. It is important that at such small transition energies, conversion coefficients

rapidly grow with decrease of the transition energy (approximately, for ∆E ≤ 20 eV, αM1
tot ∼ 1/(∆E)3−ε

and αE2
tot ∼ 1/(∆E)5−ε, where ε ∼ 0.05). As a result, the half-life of the state of interest at such small

transition energies in practice does not depend on energy, but only on the transition matrix element.
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Below, we discuss the problem of population of the above-mentioned isomeric state by the method different

from α and β-decays. Some authors proposed the method which employs synchrotron radiation, while other

ones suggested pumping 229mTh by the hollow-cathode discharge. These attempts gave no result. Here,

we consider the chance for excitation of the isomeric state in the Coulomb excitation, the process that was

proposed for the first time by K.A. Ter-Martirosyan.

For the E2 Coulomb excitation we have

dσE2(ξ, ϑ)

d Ω
=

(
Z1e

2

h̄v

)2
1

a2
B(E2 ↑)dfE2(ξ, ϑ)

dΩ
,

a ≈ 0.072
Z1Z2

E1(MeV)
(1 + A1/A2) · 10−12

cm , ξ =
Z1Z2A

1/2
1 (1 + A1/A2)∆E

12.65(E1 − 1/2 ·∆E)3/2
. (17)

Here, A1, Z1 and E1 refer to the projectile, E1 and ∆E are energy in the laboratory system and the

excitation energy in MeV, a is half the distance of the closest drawing in the backward scattering. Functions

fE2(ξ, ϑ) are expressed via integrals over trajectories. If ∆E/E1 = 0, then we obtain

dfE2(ξ = 0, ϑ)

d Ω
=

π

25

{[
1− π − ϑ

2
tan

ϑ

2

]2

· 1

cos4 ϑ/2
+

1

3

}
. (18)

In a general case, we have
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σE2(ξ) ≈ 4.78
A1Ekin(A1, MeV)B(E2 ↑, barn2)

Z2
2(1 + A1/A2)2

fE2(ξ) barn, (19)

where fE2(ξ = 0) = 0.895.

For the M1 Coulomb excitation we have

dσM1(ξ, ϑ)

d Ω
=

(
Z1e

2

h̄c

)2
λ−c (p)2

4
B(M1 ↑)dfM1(ξ, ϑ)

d Ω
, λ−c (p) =

h̄

mpc
. (20)

For ξ = 0 we obtain

dfM1(ξ = 0, ϑ)

d Ω
=

16π

9

[1− (π−ϑ)/2 · tan ϑ/2]2

sin2 ϑ
. (21)

We see from Eq.(21), that by ∆E → 0 (as in our case) and ϑ → 0 the total cross section logarithmically

diverges. At the same time, the probability of the M1 excitation by ξ = 0, P (M1, ξ = 0, ϑ) =

dσ(M1, ϑ)/dσ(Coul, ϑ) ∼ ϑ2 by ϑ → 0. Thus, the divergence of the M1 cross section at ϑ → 0 is

due only to the divergence of the Coulomb scattering at ϑ → 0, in this case the the colliding nuclei are far

from each other, and the Coulomb interaction between nuclei is really screened by the electron clouds. Really,

almost all electron charge of atom is located at distances less than the Bohr radius RB = h̄2/(mee
2). In this

way, we should exclude intervals more than Rmax, i.e. exclude scattering angles less than ϑmin, where
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ϑmin = 2 arcsin

(
1

Rmax/a− 1

)
≈ 2a

Rmax

, Rmax ≈ 2RB . (22)

Then, we obtain

σM1 = 0.589 · 10−8
Z

2
1 B(M1 ↑) fM1(ξ = 0, ϑmin) barn . (23)

Here, B(M1) is in the units of µ2
N and

fM1(ξ = 0, ϑmin) =
32 π2

9

π∫

ϑmin

[1− (π−ϑ)/2 · tan ϑ/2]2

sin ϑ
dϑ . (24)

For ϑmin 1,2 less than 10 we have

fM1(ξ = 0, ϑmin 1) ≈ fM1(ξ = 0, ϑmin 2) +
32π2

9
ln

(
ϑmin 2

ϑmin 1

)
. (25)

For protons and α-particles with energies 10 MeV bombarding 229Th, ϑmin ∼ 0.10 and fM1(ξ =

0, ϑmin = 0.10) = 186. The corresponding cross section is negligible as compared to the E2 excitation,

this statement is even more valid for excitation of high-lying states, for which the magnitude of fM1 rapidly

decreases. Thus, all levels considered by us here, are populated in the Coulomb excitation by means of the E2

transitions.
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One should allow for the fact that settlement of the lowest 3/2+ level may happen not only due to the

direct Coulomb excitation from the ground state, but also due to the discharging of the excited higher-lying

states. This process is very important as many of these states are actively excited due to large B(E2) values.

In this way, we took into account excitation of all levels shown in Fig. 1, as well as all possible E2 and M1

transitions between them. Corresponding B(E2) and B(M1) values were borrowed by us from Tables 1 and

2, while the necessary conversion coefficients were borrowed from the electronic database BRICC. Results of

our calculations of cross sections are demonstrated in Table 4. Here, σ corresponds to the direct excitation,

while σeff is the effective cross section, that includes settlement of the 3/2+
1 state by γ-transitions from

the high-lying levels. One can easily see that the allowance of feeding from the high-lying states leads to

considerable increase of population of the isomeric state. Note, that taking into account additional excited

states leads to further increase of σeff as compared to σ.

For example, let’s take the foil of 229Th with thickness d = 10 µm. The density ρ of Th is about 3 ·10 22

atoms/cm3. Suppose that we have constant in time beam of 10 MeV protons with a beam current j equal

to 1µA (∼ 0.6 · 1013 atoms/s).Then, the counting rate for transitions from the 0.0076 keV level (allowing

also for the settlement of this level from the high-lying states that are excited in the process of the Coulomb

excitation) is N = j · σeff · ρ · d ≈ 3 · 10 5 s−1. However, this level decays mainly by the electron conversion

(αM1
tot ≈ 1.4 · 10 9). Thus, the counting rate for γ-quanta is only Nγ ∼ 2 · 10−4 s−1, i.e. ∼ 20 d−1.

However, one should keep in mind that metallic Th is not transparent for “blue” γ-rays. Thus, it is neseccary

to use a target from the radiolucent glassy material containing Th atoms.
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Table 4: Comparison between the cross sections σ and the “effective” cross sections σeff for the Coulomb

excitation of the 229Th levels by protons and α-particles.

Energy Protons, 6 MeV Protons, 10 MeV 4He, 10 MeV
Level keV σ, barn σeff, barn σ, barn σeff, barn σ, barn σeff, barn

3/2+
1 0.0076 1.389(-4) 1.008(-3) 2.314(-4) 1.679(-3) 9.020(-4) 6.448(-3)

5/2+
2 29.2 2.082(-4) 7.120(-4) 3.463(-4) 1.186(-3) 1.339(-3) 4.545(-3)

7/2+
1 42.4 9.696(-3) 1.236(-2) 1.613(-2) 2.058(-2) 6.202(-2) 7.894(-2)

7/2+
2 71.8 1.151(-4) 2.977(-4) 1.916(-4) 4.966(-4) 7.316 (-4) 1.890(-3)

9/2+
1 97.1 3.370(-3) 3.371(-3) 5.620(-3) 5.621(-3) 2.138(-2) 2.139(-2)

9/2+
2 125.4 2.291(-5) 2.291(-5) 3.831(-5) 3.831(-5) 1.429(-4) 1.429(-4)
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Table 5: Gamma-transitions in nuclei with energies right up to 3 keV.

Nucleus T1/2 (g.s.) Ei (keV) Jπ
i T1/2(i) Jπ

f Eγ (keV)

45-V 547 ms 56.8 (3/2 –) 0.43 µs (5/2 –) 0.8

90-Nb 1.46 h 124.7 4 – 18.81 s 6+ 2.3

93-Tc 2.75 h 2185.16 (17/2) – 10.2 µs (17/2)+ 0.31

99-Tc 2 · 105 y 142.68 1/2 – 6.007 h 7/2+ 2.17

110-Ag 24.5 s 1.112 2 – 660 ns 1+ 1.112

154-Eu 8.6 y 100.86 4+ 54 ns 3+ 0.91

153-Gd 240 d 95.17 9/2+ 3.5 µs 7/2 – 1.83

153-Gd 240 d 171.2 (11/2 –) 76.0 µs 9/2 – 2.8

188-Re 17 h 172.07 (6) – 18.59m (3) – 2.63

186-Ir 16.6 h 0.0 + x 2 – 1.9 h 5+ ≤ 1.5

193-Pt 50 y 1.642 3/2 – 9.7 ns 1/2 – 1.642

201-Hg stable 1.565 1/2 – 81 ns 3/2 – 1.565

205-Pb 1.7 · 107 y 2.33 1/2 – 24.2 µs 5/2 – 2.33

203-Po 36.7 m 641.7 13/2+ 45 s 7/2 – 2.1

229-Th 7.88 · 103 y 0.0076 (3/2+) 7µs 5/2+ 0.0076

235- U 7 · 108 y 0.076 1/2+ 26 m 7/2 – 0.076

250-Bk 3.2 h 35.59 (4+) 29 µs (3 –) 1.12

251-Cf 898 y 106.31 7/2+ 38 ns 7/2+ 0.57
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229Th(neutr.atom) : T1/2 = 7µs; Eγ = 7.6 eV; ∆Eγ(rec) = 1.35 · 10−10 eV (Mossbauer)

∆Eγ(rad) = 6.6 · 10−11 eV; ∆Eγ(rad)/Eγ = ∆ν/ν = 8.7 · 10−12 ; ∆ν = 1.6 · 104 Hz.

β(M1) ≈ 1.4 · 109; α(E2) ≈ 1.2 · 1016.
229Th (ion): I.p.(1)=6.08 eV; I.p.(2)=11.5 eV. Thus, for 229Th(+) ∆ν/ν ∼ 10−20; T1/2 ∼ 3h.

235U : T1/2 = 26 min; Eγ = 76.5 eV; ∆Eγ(rec) = 1.34 · 10−8 eV (Mossbauer)

∆Eγ(rad) = 2.9 · 10−19 eV; ∆Eγ(rad)/Eγ = ∆ν/ν = 3.8 · 10−21; ∆ν = 7 · 10−5 Hz.

β(M4) ∼ 1018; α(E3) ∼ 1013

201Hg : T1/2 = 81 ns; Eγ = 1565 eV; ∆Eγ(rec) = 6.54 · 10−6 eV (Mossbauer)

∆Eγ(rad) = 5.6 · 10−9 eV; ∆Eγ(rad)/Eγ = ∆ν/ν = 3.6 · 10−12 ; ∆ν = 1.4 · 106 Hz.

β(M1) ≈ 3.0 · 103; α(E2) ≈ 3.5 · 107

He-Neon (Iodine) laser gives ∆ν/ν ∼ 10−11 ; λ(He−Ne)=632.99139822 nm

Cesium laser gives ∆ν/ν ∼ 10−13 to 10−14; Atomic clock

Nuclear radiation provides stable frequency being not subjected by the external influence

THANK YOU FOR ATTENTION
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Figure 3: Diagrams showing γ-decay, conversion and descrete conversion
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