TABLE II – continued from previous page	TABLE II – continued from previous page	TABLE II – continued from previous page	TABLE II – continued from previous page
Model $\rho_0 = E_0 = K_0 = K' = J = L = K_{sym} = Q_{sym} = K_{\tau,y} = m^*$	Model - R K K I I I K O K	Model $\rho_0 = E_0 = K_0 = K' = J = L = K_{sym} = Q_{sym} = K_{\tau,v} = m^*$	Model $p_0 = E_0 = K_0 = K' = J = L = K_{\text{sym}} = K_{T,N} = m^*$
MSk1 [174] 0.157 -15.83 233.73 379.97 30.00 33.92 -200.02 448.66 -348.39 1.00	Model $p_0 = E_0 = K_0 = K = J = L = K_{BYB} = V_{BYB} = K_{T,V} = m$	SkT5a [180] 0.164 -16.00 201.69 436.81 37.00 98.53 -24.97 99.88 -402.76 1.00	SVII [184] 0.143 -15.79 366.44 -164.51 26.96 -10.16 -488.90 149.74 -423.36 1.00
MSk2 [174] 0.157 -15.83 231.65 386.21 30.00 33.35 -203.44 449.71 -347.94 1.05	5KH [168] 0.100 -15.95 247.95 331.21 29.50 00.39 -40.50 351.10 -322.23 0.65	SkT6a [180] 0.161 -15.96 235.95 383.15 29.97 30.85 -211.53 472.36 -346.54 1.00	SV-K218 [115] 0.161 -15.90 218.23 403.15 30.00 34.62 -206.87 401.58 -350.65 0.90
MSk3 [174] 0.157 -15.79 233.25 379.01 28.00 7.04 -283.52 615.65 -314.33 1.00	SK13 [168] 0.130 -15.63 235.79 301.95 30.09 129.33 159.57 11.73 -405.74 0.56	SkT7a [180] 0.161 -15.94 235.64 372.22 29.52 31.12 -209.85 439.35 -347.42 0.83	SV-K226 [115] 0.160 -15.90 225.82 392.14 30.00 34.09 -211.92 401.84 -357.27 0.90
MSk4 [174] 0.157 -15.79 231.17 385.26 28.00 7.20 -284.05 610.93 -315.24 1.05	Ski0 [199] 0.159 -16.69 246.11 520.56 29.90 55.24 -40.11 516.12 -524.20 0.04 CLM [199] 0.160 15.77 916.61 996.00 90.75 40.94 149.81 999.94 956.01 0.70	SkT8a [180] 0.161 -15.94 235.70 372.37 29.92 33.72 -187.52 476.25 -336.59 0.83	SV-K241 [115] 0.159 -15.91 241.07 364.54 30.00 30.95 -230.77 416.01 -369.66 0.90
MSk5 [174] 0.157 -15.79 231.17 385.26 28.00 7.57 -282.55 607.93 -315.36 1.05	SkM [122] 0.100 -10.11 210.01 300.09 30.13 45.34 -146.51 323.34 -300.91 0.19 SkM [100] 0.160 15.77 216.61 286.00 20.02 45.78 155.04 220.47 240.00 0.70	SkT9a [180] 0.160 -15.88 234.91 370.97 29.76 33.74 -185.62 471.98 -334.76 0.83	SV-kap00 [115] 0.160 -15.90 233.44 379.15 30.00 39.44 -161.78 446.94 -334.34 0.90
MSk5* [119] 0.156 -15.78 243.74 346.15 28.00 7.02 -290.66 595.12 -322.81 0.80	SkM [199] 0.100 -15.11 210.01 300.09 30.03 40.10 -155.94 330.41 -049.00 0.19 SkM1 [101] 0.160 15.77 216.61 286.00 25.17 25.97 288.80 012.87 290.72 0.70	SkTK [203] 0.168 -16.70 253.28 346.18 35.57 41.59 -221.79 527.94 -414.46 0.61	SV-kap02 [115] 0.160 -15.90 233.44 379.21 30.00 35.54 -193.19 431.91 -348.69 0.90
MSk6 [174] 0.157 -15.79 231.17 385.35 -05.00 -9.63 -05.00 591.40 04.00 1.05		SKX [204] 0.155 16.05 271.06 207.42 21.10 33.18 252.12 379.69 414.81 0.99	SV-kap06 [115] 0.160 -15.91 233.45 379.33 30.00 29.33 -249.75 388.84 -378.10 0.90
MSk7 [175] 0.157 -15.80 231.22 38 27 9.40 274.6 592.08 315.28 1.05		SI o [204] 0. 55 .86 26 27 30 33 8 238.39 6.93 -402.51 1.01	SV-mas07 [115] 0.160 -15.89 233.54 356.93 30.00 52.15 -98.77 365.68 -331.96 0.70
MSk8 [175] 0.157 -15.80 229.31 39, 27 8.26 280.0 597.59 117 19 1.10	SkO' 160 -177 222.36 -20 1.95 68.94 -22.3	s m [204] 0.159 .04 23 0.48 31 .3.08 -242.76 73 -384.00 0.97	SV-mas08 [115] 0.160 -15.90 233.13 371.28 30.00 40.15 -172.38 397.44 -349.35 0.80
MSk9 [175] 0.157 -15.80 233.33 379. 28 10.36 -270.2 589.06 315. 7 1.00	SkP 163 000 97 43 0.00 19.68 -266.6 308.3 1.00	8 [5 [205] 0.161 .76 20 42 31 9 -197.10 5 0 -332.38	SV-mas10 [115] 0.159 -15.91 234.33 383.22 30.00 28.04 -252.50 408.07 -374.87 1.00
MSkA [176] 0.153 -15.99 313.33 17 30 57.17 -135.3 197.74 153.13 1.79	SKR 05 159 -15.78 5.98 78.76 1.32 53.0 -122 310.8 -364 0.3	Six 0 [205] 0.162 .81 20 42 35 6122 81 32 -383.37 0.96	SV-sym28 [115] 0.163 -16.47 240.86 392.55 28.47 6.29 -305.94 584.47 -333.41 0.90
MSL0 [101] 0.160 -16.00 230.00 380.32 30.00 6 0 -99.33 4.29 -360.11 0.80	SkS1 [196] 0.161 -15.86 228.43 382.76 28.75 30.52 -218.69 379.24 -350.66 0.86	Skxs25 [205] 0.161 -15.87 202.92 -440.88 39.60 100.10 -50.28 145.99 -440.88 0.96	SV-sym32 [115] 0.159 -15.94 233.81 380.11 32.00 57.07 -148.79 257.70 -398.44 0.90
NRAPR [177] 0.161 -15.85 225.65 362.54 32.78 59.63 -123.32 371.61 -385.32 0.69	SkS2 [196] 0.161 -15.89 229.02 382.73 29.23 37.84 -218.07 270.03 -381.86 0.85	Skz-1 [128] 0.160 -16.01 230.08 365.25 32.00 54.14 -184.08 217.03 -422.99 0.70	SV-sym34 [115] 0.159 -15.97 234.07 380.82 34.00 80.95 -79.08 111.28 -433.08 0.90
PRC45 [178] 0.145 -15.82 367.58 -165.69 51.01 141.52 -23.01 92.05 -935.89 1.00	Sk53 [196] 0.161 -15.88 228.83 382.62 28.84 51.74 -157.38 154.06 -381.30 0.85	Skz0 [128] 0.160 -16.01 230.08 365.24 32.00 35.10 -242.20 405.16 -397.08 0.70	SV-tls [115] 0.160 -15.89 233.30 379.03 30.00 33.22 -218.42 403.90 -363.79 0.90
RATP [179] 0.160 -16.05 239.52 349.83 29.26 32.39 -191.23 440.70 -338.28 0.67	SkS4 [196] 0.163 -15.88 228.08 385.45 28.35 23.28 -238.42 438.06 -338.77 0.87	Skz1 [128] 0.160 -16.01 230.08 365.25 32.01 27.67 -242.40 535.38 -364.50 0.70	T [171] 0.161 -15.93 235.66 382.44 28.35 27.18 -206.76 462.91 -325.76 1.00
Rs [171] 0.158 -15.59 237.42 34 5 869.2 22 -400.7 0.78	S3 SC1 1.161 5.8. 234 380.50 28. 0.1 12.03 (32 -312.) 1.00	Skz2 [128] 0.160 16.01 230.07 105.2 32.01 81 -25 682.63 33.83 0.70	
Sefm068 [180] 0.160 -15.92 240.11 34 89 25431.10 59 1190.8 0.68	SkSC2 0.161 5.90 23 381.60 24. 11 0 -228.22 . 9 -276. 1.00	Skz3 [12] 0.160 16.01 230.0 365.26 2.01 6 -30 794.95 9.08 0.70	
Sefm074 [180] 0.160 -15.81 240.10 35 5 88. 14 58436.1 0.74	SkSC3 0.161 5.85 2 380.32 27296.20 64 -299.75 0	Skz4 [178] 0.160 12.01 230. 365.26 1.01 240 923.89 2.24 0.70	T13 [1 01 304.78 32.00 49.53 -108.06 487.57 -326.69 0.70
Sefm081 [180] 0.161 -15.69 237.04 35 30 7939.54 66396.4 0.81	SkSC4 0 0161 5.87 23 380.79 28 -2 -329.4 708 -320.7 1.00	SLy0 222 0.160 -15.97 229. 364.01 1.98 47116 508.9 3 0.70	
Sefm09 [180] 0.161 -15.55 240.06 24	SkSC40 [157] 0.161 -1557 234.74 -579 2700 -9.61 -595.05 725.55 -250.10 1.60	SLY [206] 0.160 15.99 229.81 864.3 81.99 47.0 -110 80 86 -32 U	T16 [152] 0.161 -16.01 230.01 365.68 22.00 49.45 -108.75 487.24 -226.83 0.70
Sefm1 [180] 0.161 -15.40 240.07 346.34 24.81 59.55 -46.89 81.53 -318.28 1.00	SkSC5 [200] 0.161 -15.85 234.50 380.34 30.99 -6.97 -375.08 799.41 -344.58 1.00	SLy2 [206] 0.161 -15.99 229.92 364.21 32.00 47.46 -115.13 506.52 -324.69 0.70	T21 [152] 0.161 -16.03 230.01 366.49 32.00 49.77 -108.03 483.25 -327.37 0.70
SGI [181] 0.154 -15.89 261.75 297.93 28.33 63.86 -51.99 194.46 -362.49 0.61	SkSC6 [200] 0.161 -15.92 235.41 382.13 24.57 11.00 -226.26 501.80 -274.39 1.00	SLy230a [45] 0.160 -15.99 229.89 364.18 31.99 44.32 -98.22 602.87 -293.91 0.70	T22 [152] 0.161 -16.02 230.01 365.95 32.00 49.57 -108.50 485.74 -327.04 0.70
SGII [181] 0.158 -15.60 214.65 380.91 26.83 37.63 -145.90 330.41 -304.90 0.79	SkSC10 [200] 0.161 -15.96 235.89 383.08 22.83 19.13 -172.77 394.81 -256.47 1.00	SLy2306 [45] 0.160 -15.97 229.91 363.10 32.01 45.97 -119.72 521.50 -322.92 0.69 SLy2 [06] 0.160 15.04 220.51 262.56 21.07 45.26 121.00 524.75 222.92 0.69	T23 [152] 0.161 -16.01 230.01 365.63 32.00 49.59 -108.27 485.95 -326.97 0.70
SGOI [182] 0.168 -16.63 361.59 -37.36 45.20 99.76 -155.64 144.36 -764.53 0.61	SkSC11 [201] 0.161 -15.87 234.72 380.79 28.80 -2.12 -329.49 708.23 -320.20 1.00	SLy3 [206] 0.160 -15.94 229.51 362.36 31.97 45.36 -121.90 524.75 -322.39 0.70 SLy4 [907] 0.160 15.07 990.01 969.11 99.00 45.04 110.79 591.59 999.89 0.69	T24 [152] 0.161 -16.01 230.01 365.37 32.00 49.85 -107.22 484.00 -327.14 0.70
SGOII [182] 0.168 -16.70 253.28 346.18 93.98 246.02 -119.57 272.39 -1259.44 0.61	SkSC14 [199] 0.161 -15.92 235.41 382.13 30.00 33.13 -202.83 454.93 -347.84 1.00	SLy5 [207] 0.161 -15.99 220.02 264.16 22.01 48.15 -112.76 500.67 -225.28 0.70	T25 [152] 0.161 -15.99 230.01 364.24 32.00 49.12 -109.21 491.85 -326.16 0.70
SI [27] 0.155 -15.99 370.38 -152.32 29.24 1.22 -461.84 141.44 -469.66 0.91	SkSC15 [199] 0.161 -15.88 234.93 381.17 28.00 6.72 -284.47 618.21 -313.89 1.00	SLy6 [207] 0.150 15.02 22.52 00110 02.01 0.10 112.10 0.000 02000 0.10 SLy6 [207] 0.150 15.02 220.96 260.24 21.06 47.45 112.71 510.62 222.02 0.60	T26 [152] 0.161 -15.98 230.01 363.48 32.00 48.76 -110.15 495.92 -325.64 0.70
SH [27] 0.148 -15.99 341.40 -15.76 34.16 50.02 -265.72 104.75 -568.17 0.58	SkSP.1 [119] 0.162 -15.90 230.02 502.64 28.00 -289.55 662.66 -316.92 0.80	SLy7 [207] 0.158 -15.90 220.75 250.22 21.00 46.04 -114.24 517.14 -222.60 0.69	T31 [152] 0.161 -16.02 230.01 366.28 32.00 49.75 -108.00 483.82 -327.27 0.70
SIII [183] 0.145 -15.85 355.37 -101.38 28.16 9.91 -393.73 130.45 -456.01 0.76	SkT [202] 0.148 -15.40 333.36 -29.01 33. 807 9.95 0.60	SLy8 [206] 0.160 -15.97 229.89 363.27 32.00 47.18 -115.59 509.88 -324.09 0.70	$T32\ [152] \qquad 0.161 -16.03 230.01 366.39 32.00 50.28 -106.20 478.97 -327.80 0.70$
SIII* [184] 0.148 -16.07 361.15 -107.94 31.97 28.70 -358.37 84.84 -539.13 0.78	SkT1 [113] 0.161 -15.98 236.16 383.52 32.02 -13 318.99 8 1.00	SLv9 [206] 0.151 -15.80 229.84 350.42 31.98 54.86 -81.42 462.35 -326.92 0.67	T33 [152] 0.161 -16.02 230.01 366.10 32.00 49.66 -108.23 484.88 -327.13 0.70
SIV [183] 0.151 -15.96 324.55 68.84 31.22 63.50 -136.72 79.45 -504.22 0.47	SkT2 [113] 0.161 -15.94 235.73 382.67 32. 5613 318.66 18 1.0	v10 [207] 0.156 -15.90 229.68 358.32 31.90 38.51 -142.18 591.23 -313.17 0.68	T34 [152] 0.161 -16.02 230.01 366.28 32.00 50.10 -106.81 480.71 -327.60 0.70
Sk1' [185] 0.155 -15.99 370.38 -152.32 29.35 35.34 -259.16 141.44 -485.71 0.91	SkT3 [113] 0.161 -15.95 235.74 382.70 31. 55 -13	MC1 [156] 0.137 -14.00 328.76 -143.78 29.68 -6.70 -504.25 218.08 -461.10 0.93	T35 [152] 0.161 -16.00 230.01 364.84 32.00 49.59 -107.85 487.05 -326.74 0.70
SK255 [68] 0.157 -16.33 254.93 350.09 37.40 95.05 -58.33 94.23 -498.11 0.80	SkT4 [113] 0.159 -15.96 235.50 382.94 35.24 35.49 -2 97.84 6	MC2 [156] 0.140 -14.29 330.10 -121.75 28.70 8.67 -408.41 145.55 -463.63 0.83	T36 [152] 0.161 -15.99 230.01 364.51 32.00 49.05 -109.62 491.98 -326.20 0.70
SK272 [68] 0.155 -16.28 271.51 305.31 37.40 91.67 -67.78 134.36 -514.70 0.77	SkT5 [113] 0.164 -16.00 201.69 436.81 37.00 98.53 -2 99.88 -	SOMC3 [156] 0.161 -15.98 366.97 -130.22 45.78 91.80 -210.95 163.48 -794.33 0.82	T41 [152] 0.162 -16.06 230.01 368.36 32.00 50.60 -106.02 473.67 -328.60 0.70
SkA [186] 0.155 -15.99 263.16 300.13 32.91 74.62 -78.46 174.54 -441.08 0.61	SkT6 [113] 0.161 -15.96 235.95 383.15 29.97 30.85 -21 1 1.	QMC600 [157] 0.174 -15.74 217.00 388.62 34.38 46.38 -215.16 396.85 -410.40 0.81	T42 [152] 0.162 -16.05 230.01 368.04 32.00 50.70 -105.51 473.28 -328.59 0.70
Ska25s20 [187] 0.161 -16.07 220.75 413.45 33.78 63.81 -118.22 314.13 -381.56 0.98	SkT7 [113] 0.161 -15.94 235.64 372.22 29.52 31.12 -20.55 10.55 -347.42 0.83	SQMC650 [157] 0.172 -15.57 218.11 376.75 33.65 52.92 -173.15 349.74 -399.28 0.78	T43 [152] 0.162 -16.04 230.01 367.39 32.00 50.57 -105.66 475.23 -328.31 0.70
Ska35s15 [187] 0.158 -16.01 238.89 378.88 30.56 30.60 -222.90 481.99 -357.96 1.01	SkT8 [113] 0.161 -15.94 235.70 372.37 29.92 33.72 -187.52 476.25 -336.59 0.83	SQMC700 [157] 0.171 -15.49 222.20 369.94 33.47 59.06 -140.84 313.84 -396.85 0.76	T44 [152] 0.161 -16.02 230.01 365.91 32.00 50.05 -106.76 481.62 -327.45 0.70
Ska35s20 [187] 0.158 -16.08 240.27 378.65 33.57 64.83 -120.32 284.54 -407.11 1.00	SkT9 [113] 0.160 -15.88 234.91 370.97 29.76 33.74 -185.62 471.98 -334.76 0.83	SQMC750 [157] 0.171 -15.60 222.86 365.83 33.75 64.67 -117.51 288.41 -399.38 0.74	T45 [152] 0.161 -16.02 230.01 366.10 32.00 49.66 -108.24 484.73 -327.16 0.70
Ska35s25 [187] 0.158 -16.14 241.30 378.94 36.98 98.89 -23.57 97.46 -461.60 0.99	SkT1* [113] 0.162 -16.20 238.95 388.75 32.31 56.58 -136.66 322.86 -384.07 1.00	SSk [51] 0.161 -16.16 229.31 375.38 33.50 52.78 -119.15 482.24 -349.42 0.72	140 [102] 0.101 -10.00 230.01 304.75 32.00 49.93 -106.59 484.25 -327.00 0.70
Ska45s20 [187] 0.156 -16.08 260.21 330.55 33.39 66.21 -119.99 251.77 -433.13 1.02	SkT3* [113] 0.162 -16.20 238.95 388.76 31.97 56.32 -133.65 316.82 -379.93 1.00	SV [183] 0.155 -16.05 305.70 175.78 32.82 96.09 24.17 48.00 -497.11 0.38	TE2 [122] 0.102 -10.05 230.01 367.96 32.00 50.69 -105.52 473.55 -328.55 0.70
SkB [186] 0.155 -15.99 263.16 300.13 23.88 47.54 -78.46 174.54 -309.50 0.61	SkT1a [180] 0.161 -15.98 236.16 383.52 32.02 56.18 -134.83 318.99 -380.68 1.00	SV-bas [115] 0.160 -15.91 233.45 379.28 30.00 32.37 -221.75 410.93 -363.36 0.90	152 [152] 0.101 -10.00 240.01 305.07 32.00 50.08 -105.55 473.55 -328.55 0.70
Skl1 [188] 0.160 -15.95 242.75 346.14 37.53 161.05 234.67 -328.02 -502.01 0.69	SkT2a [180] 0.161 -15.94 235.73 382.67 32.00 56.16 -134.67 318.66 -380.48 1.00	SV-min [115] 0.161 -15.91 221.76 403.08 30.66 44.81 -156.57 389.56 -343.99 0.95	T54 [152] 0.101 -10.02 200.01 300.21 32.00 50.03 -100.39 481.50 -327.50 0.70 T54 [152] 0.161 16.09 390.01 966.79 93.00 50.97 106.96 478.71 937.85 0.70
Sk12 [188] 0.158 -15.78 240.93 339.70 33.37 104.33 70.69 51.62 -408.21 0.68	SkT3a [180] 0.161 -15.95 235.74 382.70 31.50 55.31 -132.05 313.43 -374.14 1.00	SVI [183] 0.143 -15.76 363.64 -153.50 26.88 -7.34 -471.30 146.04 -424.18 0.95	104 [104] 0.101 -10.00 200.01 000.13 32.00 30.21 -100.30 478.11 -327.85 0.10 Continued on next name
Skl3 [188] 0.158 -15.98 258.19 303.86 34.83 100.53 73.04 211.54 -411.80 0.58	SkT4a [180] 0.159 -15.96 235.50 382.94 35.45 94.13 -24.46 97.84 -436.19 1.00	Continued on next page	Continued on next page
Continued on next page	Continued on next page		

		ТА	ABLE II – co	ntinued from	previous	page					ТА	BLE II –	continued	from previ	ous page																						
Model	ρο	Eo	Ko	K' = J	L	K_{sym}	$Q_{sym} = K_{\tau,y}$	<i>m</i> *	Model	00	Ea	Ke	<i>K'</i>	1	L K.		an K					Τ/	BLE VII – con	tinued from	previous pa	go					Т	ABLE VII – c	ontinued from	previous page			
MSk1 [174]	0.157	-15.83	233.73	379.97 30.	00 33.92	-200.02	448.66 -348.	.39 1.00	SkT5s [180]	0.164	-16.00	201.69	436.81	37.00	853 -2	4.97 (0.88 -40	2.76 1.00	Model		90	E_0	K ₀ m*	K'	J	L ₀ K	o Q	$K^0_{\pi,w}$ $K^0_{\pi,w}$	Model	Po	E_0	K ₀ m*	K'	J I	K_{sym}^0	$Q^0_{\rm sym}$	$K^0_{\tau,v}$
MSk2 [174]	0.157	-15.83	231.65	386.21 30.	00 33.35	-203.44	449.71 -347.	94 1.05	SkT6a [180]	0.161	-15.96	235.95	383.15	29.97	0.85 -21	1.53 45	2.36 -34	6.54 1.00	RMF404	[80] 0.	153 -	16.30	231.99 0.72	478.64	32.50	93.11	17.78	88.39 -348.78	NL4 [92]	0.148	-16.16	270.34 0.6	-193.75	36.24 11	4.92 99.72	180.84	4 -672.14
MSk3 [174]	0.157	-15.79	233.25	379.01 28.	00 7.04	-283.52	615.65 -314	.33 1.00	SkT7a [180]	0.161	-15.94	235.64	372.22	29.52	1.12 -20	9.85 43	9.35 -34	7.42 0.83	RMF405	[80] 0.	153 -	16.30	233.99 0.72	470.83	32.50	93.10	17.50	85.94 -353.76	NLB [93]	0.148	-15.77	421.02 0.6	-727.93	35.01 10	8.26 54.94	-132.35	5 -781.79
MSk4 [174]	0.157	-15.79	231.17	385.26 28.	00 7.20	-284.05	610.93 -315.	24 1.05	SkT8a [180]	0.161	-15.94	235.70	372.37	29.92	3.72 -18	7.52 41	6.25 -33	6.59 0.83	RMF406	[80] 0.	153 -	16.30	233.99 0.78	520.06	32.50	89.75	-5.80	58.72 -344.85	NLB1 [78]	0.162	-15.79	280.44 0.63	-108.61	33.04 10	2.51 76.15	107.80) -578.59
MSk5 [174]	0.157	-15.79	231.17	385.26 28.	00 7.57	-282.55	607.93 -315.	36 1.05	SkT9a [180]	0.160	-15.88	234.91	370.97	29.76	3.74 -18	5.62 41	1.98 -33	4.76 0.83	RMF407	[80] 0.	153 -	16.30	229.99 0.73	493.83	32.50	92.50	13.42	82.67 -342.96	NLB2 [78]	0.163	-15.79	245.58 0.53	-542.60	33.10 11	1.30 158.94	289.13	3 -754.77
MSk5* [119]	0.156	-15.78	243.74	346.15 28.	00 7.02	-290.66	595.12 -322.	81 0.80	_SkTK [203]	0.168	-16.70	253.28	346.18	35.57 4	1.59 -22	1.79 52	27.94 -41	4.46 0.61	RMF408	[80] 0.	153 -	16.30	231.99 0.73	486.58	32.50	92.48	13.15	80.44 -347.78	NLC [93]	0.148	-15.77	224.46 0.63	278.13	35.02 10	7.97 76.91	235.59) -437.12
MSk6 [174]	0.157	-15.79	231.17	385.26 28.	9.63	-2 <mark>.</mark> 33	1.49 -316.	.05 1.05	SKX [204]	0.155	-16.05	271.06	297.42	31.10 3	3.18 -25	2.12 35	9.69 -41	4.81 0.99	RMF409	180 0.	0		233.99 0.73	479.45	32.50	92.47	12.88	78.25 -352.46	NLD [94]	0.148	-15.77	343.21 0.7) 75.49	35.01 10	1.52 13.53	-12.22	2 -573.26
MSk7 [175]	0.157	-15.80	231.22	385.36 27.	95 9.40	-2 63	2.09		SF ce [204]	155	-1 86	26 .4	94 7		3.48 -23	8.39 3!	8 0	2.5 1	RMP		D	.30	10.0	472.46	32.50	0.0		09 357		0.1	16.0	00.00 0.70	600.49	30.00 8	7.02 33.20	161.25	5 −227.65
MSk8 [175]	0.157	-15.80	229.31	391.01 27.	93 8.26	-2 .01	7.1	4 1.10	SF m [1]	0.109	-1 04	23 9	80 8	AL20	2.08 -24	6 42	8 8	4. 0		n 0.	170	- 30		403.50	32.50	91.34	.00	27 31 B		0 0		0.00 0.7	675.54	30.00 8	6.95 33.27	170.92	2 -194.74
MSk9 [175]	0.157	-15.80	233.33	379.16 28.	00 10.36	-2.23	9.06 0	57	Skxs15 [205]	0.161	-15.76	201.10	424.57	31.88	4.79 -19	7.10 51	6.30 -33	18 0.9	DAIDAG	1901 0	153	16.20	022.00 0.74	493.32	93,50	01.87		21.00 971.00		0.1	16.0	0.00 0.7	591.82	30.00 8	7.45 33.01	156.01	1 -232.93
MSkA [176]	0.153	-15.99	313.33	138.15 30.	35 57.17	-135.34	197.74 -453.	.13 0.79	Skxs20 [205]	0.162	-15.81	201.95	425.56	35.50	7.06 -12	2.31 32	8.52 -38	3.37 0.96	RMF413	1801 0.	153 -	16:30	235.99 0.74	480.94	32.50	91.87	8.33	69.99 -355.62	NLM4 [89]	0.160	-16.00	300.00 0.7	196.02	30.00 8	6.25 17.69	22.57	7 -443.46
MSL0 [101]	0.160	-16.00	230.00	380.32 30.	00 60.00	-99.33	224.29 -360.	.11 0.80	Skxs25 [205]	0.161	-15.87	202.92	-440.88	39.60 10	0.10 -5	0.28 14	15.99 -44	0.88 0.96	BMF415	1801 0	153 -	16.30	229.98 0.75	505.92	32.50	91.33	5.00	70.28 -342.01	NLM5 [89]	0.160	-16.00	200.00 0.53	-216.98	30.00 10	3.18 179.44	524.64	4 -551.60
NRAPR [177]	0.161	-15.85	225.65	362.54 32.	78 59.63	-123.32	311.61 -385.	32 0.69	Skz-1 [128]	0.160	-16.01	230.08	365.25	32.00 1	4.14 -18	4.08 🥢	m -	2.99 0.70	RMEAN	1801 0.	18	16.30	221.98 _0.75	500.17	22.50	01 23	4.82	68.54 -346.19	NLM6 [89]	0.160	-16.00	200.00 0.70	600.49	40.00 11	7.02 33.20	161.24	4 -317.57
PRC45 [178]	0.145	-15.82	367.58	165.69 51.	01 141.52	1 100	97		Sh []	160	-10 11	137 6	65.24	2.00 \$	50 4	2.20	w L	0.70	RMF4D	OI CO	Ζ.	16.30	29 9 75	1.5	2.5	80	4.58	66. (0.2)	LR.			320.48 0.63	3 -216.23	38.90 11	9.09 62.11	26.63	3 -732.77
RATP [179]	0.160	-16.05	239.52	349.83 29.	26 32.39	23	44 70 8	0.67	Sk [17	160	-1	23 18	365.25	2.01 2	7 4	2.40	5 -	4.5 0.70	R117415	0 0	12 -	16.30	23 8 75	1.0	2.5	29	4.34	65. 54.2	н 196	.147		285.23 0.60	0 -279.28	36.45 11	5.38 95.72	139.44	4 -709.55
Rs [171]	0.158	-15.59	237.42	348.46 30.	82 86.39		22	78	Skz2 [128]	0.160	-16.01	230.07	365.23	32.01 1	6.81 -25	9.66 62	2.63 -33	3.83 0.70	RMF419	[80] 0.	153 -	16.30	229.99 0.76	511.79	32.50	90.79	1.31	65.98 -341.39	AS	150		262.94 0.60	-57.53	42.07 13	1.59 94.22	195.27	7 -724.10
Sefm068 [180]	0.160	-15.92	240.11	347.11 88.	57 254.43	-32.10	59.40 -1190.	.85 0.68	Skz3 [128]	0.160	-16.01	230.09	365.26	32.01 1	2.96 -24	1.91 79	4.95 -29	9.08 0.70	RMF420	[80] 0.	153 -	16.30	231.99 0.76	506.88	32.50	90.78	1.09	64.47 -345.23	NLSH [90]	0.146	-10.35	355.05 0.00	400.50	30.13 11	3.68 79.83	-23.79	7 -795.00 0 - 207.80
Sefm074 [180]	0.160	-15.81	240.10	350.15 33.	40 88.73	-33.14	58.41 -436.	.12 0.74	Skz4 [128]	0.160	-16.01	230.08	365.26	32.01	5.75 -24	0.86 92	3.89 -26	6.24 0.70	RMF421	[80] 0.	153 -	16.30	233.99 0.76	502.11	32.50	90.76	0.86	62.99 -348.96	NLZ [67]	0.151	-10.18	172.04 0.50	422.39	41.72 13	5.91 140.19	511.02	2 -335.60
Sefm081 [180]	0.161	-15.69	237.04	356.66 30.	76 79.39	-39.54	66.74 -396.	41 0.81	SLv0 [206]	0.160	-15.97	229.66	364.01	31.98 4	7.11 -11	6.23 50	8.68 -32	4.23 0.70	RMF422	[80] 0.	153 -	16.30	229.99 0.77	518.27	32.50	90.27	2.17	62.86 -340.38	002001	0.151	-16.05	991.69 0.6	412.31	41.07 19	0.02 140.02 0.02 46.02	151.94	- a13.10
Sefm09 [180]	0.161	-15.55	240.06	349.75 27.	78 69.96	- 00	70 58		-sLy 206	0.165	5.99	29.8	4.3	31.99	7.0 -	5.49 50	36 32	4.27 0.70	R F42	50] 0	13 -	It.ad	1.99 0.7	1.26	.50	90 -	-2.38	1.57 -3 .86			16.95	245.07 0.7	906.44	41.85 19	0.05 07.75	02.49	9 -509.45
Sefm1 [180]	0.161	-15.40	240.07	346.34 24.	81 59.55	.89	87 🔁 18	1.00	45y 20r	0.1	5.99	29.9	4.2	32.00	7.4 -1	5.13 50	52 - 32	4.69 0.70	RMF42	80 0	53	10.00	5.99 /9	3.99	.50	19	9.88	3.59 -3 12		0	16 51	210.07 0.11	499.84	49.95 19	1.48 -1.08	49.56	6 _532.01
SGI [181]	0.154	-15.89	261.75	297.93 28.	33 63.86		194	49-0.61	SLy230 45]	.160	-15.99	229.89	364.18	31.9 4	4132 -9	8.22 60	2.87 -29	3.91 0.70	RMF425	[80] 0.	153 -	16.30	247.99 0.79	523.21	32.50	89.20 -	0.06	52.90 -1 .07	P 080 1081	0.162	-15.84	250.02 0.8	590.94	20.62 10	9.78 -14.16	59.59	9 -440.99
SGII [181]	0.158	-15.60	214.65	380.91 26.	83 37.63	-1-13.90	330.41 -304.	90 0.79	SLy230b [45]	0.160	-15.97	229.91	363.10	32.01 4	5.97 -11	9.72 52	21.50 -32	2.92 0.69	RMF426	[80] 0.	153 -	16.30	249.99 0.79	522.57	32.50	89.19 -	10.24	52.23 -358.93	01 [99]	0.148	-16.10	241.86 0.6	-8.70	36.44 11	5.71 105.65	266.72	2 -592.77
SGOI [182]	0.168	-16.63	361.59	-37.36 45.	20 99.76	-155.64	144.36 -764.	53 0.61	SLy3 [206]	0.160	-15.94	229.51	362.56	31.97 4	5.36 -12	1.90 52	14.75 -32	2.39 0.70	RMF427	[80] 0.	153	16.30	235.98 0.80	546.20	32.50	88.83 -	11.67	58.05 -339.04	RMF301 [80]	0.153	-16.30	253.86 0.7	489.08	32.50 8	9.87 -6.25	49.30	0 -372.34
SGOII [182]	0.168	-16.70	253.28	346.18 93.	98 246.02	-119.57	272.39 -1259.	.44 0.61	SLy4 [207]	0.160	-15.97	229.91	363.11	32.00 4	5.94 -11	9.73 52	1.53 -32	2.83		-*	153 -	16.30	98 .0	5 82	32.50	88.81 -	11.85	57.43 -341.04	RMF302 [80]	0.153	-16.30	249.71 0.7	502.35	32.50 8	9.66 -7.35	51.33	3 -364.94
SI [27]	0.155	-15.99	370.38	152.32 29.	24 1.22	-4, 8	d1.4 -	66-703	s (5 - 1	161	-1 - 69	22 2	6 6	2.01 4	8 1	76 -30	-32	5.38 0.70	R P429	[30] 0.	15 -	16.30	2 99	54 90	50	88	2.6	56.84 ~342.95	RMF303 [80]	0.153	-16.30	248.88 0.7	504.91	32.50 8	9.62 -7.57	51.73	3 -363.46
SII [27]	0.148	-15.99	341.40	-15.76 34.	16 50.02	-2 1	14.7 86	17-0-0	8 [1]	159	-1 92	22 6	50	91 / 4	7 5 1	1 1 0	-32	3.03 0.69	R F430	[80] 0.	15 -	16.30	2 99 80	54 3	50	8 0 -	12.1	56.26 -344.77	RMF304 [80]	0.153	-16.30	248.04 0.78	507.43	32.50 8	9.57 -7.78	52.13	3 -361.98
SIII [183]	0.145	-15.85	355.37	101.38 28.	16 9.91	-393.73	130.45 -450.	01 0.76	SLy7 [207]	0.158	-15.90	22 15	359.22	31. 4	6.9 -11	4.34 51	7.14 -32	2.60 0.69	MF431	[80] 0.	153 -	16.30	243.98 0.55	5 62	32.00	88.78	12.30	-346.50	RMF305 [80]	0.153	-16.30	246.37 0.78	512.37	32.50 8	9.49 -8.21	52.92	2 -359.04
SIII* [184]	0.148	-16.07	361.15	107.94 31.	97 28.70	-358.37	84.84 -539.	.13 0.78	SLy8 [206]	0.160	-15.97	229.89	363.27	32.00 4	7.18 -11	5.59 50	9.88 -32	4.09 0.70	RMF432	[80] 0.	153	16.30	245.98 0.80	545.86	32.50	88.77 -	12.53	55.19 -348.16	RMF306 [80]	0.153	-16.30	244.69 0.75	517.18	32.50 8	9.41 -8.63	53.72	2 -356.09
SIV [183]	0.151	-15.96	324.55	68.84 31.	22 63.50	-136.72	79.45 -504.	22 0.47	SLy9 [206]	0.151	-15.80	229.84	350.42	31.98 5	4.86 -8	1.42 46	52.35 -32	6.92 0.67	RMF433	Isul U.	153 -	16.30	247.90 0.80	546.26	32,50	88.76 -	12.70	54.68 -349.73	RMF307 [80]	0.153	-16.30	243.84 0.79	519.54	32.50 8	9.37 -8.84	54.11	1 -354.63
Sk1' [185]	0.155	-15.99	370.38	152.32 29.	35 35.34	-259.16	141.44 -485.	.71 0.91	SLy10 [207]	0.156	-15.90	229.68	358.32	31.90 \$	8.51 -14	2.18 59	01.23 -31	3.17 0.68	RMF 434	jeuj u. N O	153 -	15.30	249.99 0.80	540.81	32.50	88.74 -	7.10	54.19 -351.22	RMF308 [80]	0.153	-16.30	242.99 0.7	521.85	32.50 8	9.32 -9.04	54.50	∂ <u>-353.15</u>
SK255 [68]	0.157	-16.33	254.93	350.09 37.	40 95.05	-58.33	94.23 -498.	.11 0.80	SQMC1 [156]	0.137	-14.00	328.76	-143.78	29.68	6.70 -50	4.25 21	18.08 -46	1.10 0.93	R5K1* [8	n 0.	100 -	10.04	216.60 0.79	005 90	30.03	81.75	-7.42	66.77 -297.98 55.84 400.50	RMF309 [80]	0.153	-16.30	241.30 0.7	526.40	32.50 8	9.24 -9.45	55.28	8 -350.22
SK272 [68]	0.155	-16.28	271.51	305.31 37.	40 91.67	-67.78	134.36 -514.	.70 0.77	SQMC2 [156]	0.140	-14.29	330.10	-121.75	28.70	8.67 -40	8.41 14	15.55 -46	3.63 0.83	SMET1 I	1001 0	158	19.80	173 14 0.63	456 57	17.57	55.94	87.98	151.11 -100.85	RMF310 [80]	0.153	-16.30	238.75 0.75	532.98	32.50 8	9.12 -10.04	56.45	5 -345.82
SkA [186]	0.155	-15.99	263.16	300.13 32.	91 74.62	-78.46	174.54 -441.	08 0.61	SQMC3 [156]	0.161	-15.98	366.97	-130.22	45.78 9	1.80 -21	0.95 16	3.48 -79	4.33 0.82	SMET2 I	1001 0	162	13.78	211.31 0.65	970.11	17.38	59.79	50.97	187 74 - 188 71	RMF311 [80]	0.153	-16.30	237.89 0.7	535.10	32.50 8	9.08 -10.24	56.83	3 -344.35
Ska25s20 [187]	0.161	-16.07	220.75	413.45 33.	78 63.81	-118.22	314.13 -381.	56 0.98	SQMC600 [157]	0.174	-15.74	217.00	388.62	34.38 4	6.38 -21	5.16 39	6.85 -41	0.40 0.81	SRK3M5	[101] 0.	150 -	16.00	299.86 0.55	-966.33	23.49	82.45 1	16.76	96.88 -613.65	RMF312 [80]	0.153	-16.30	237.03 0.79	537.20	32.50 8	9.04 -10.44	57.22	2 -342.89
Ska35s15 [187]	0.158	-16.01	238.89	378.88 30.	56 30.60	-222.90	481.99 -357	96 1.01	SQMC650 [157]	0.172	-15.57	218.11	376.75	33.65	2.92 -17	3.15 34	19.74 -39	9.28 0.78	SRK3M7	[101] 0.	150 -	16.00	299.95 0.75	363.93	28.73	79.69	-2.56	24.62 -384.00	RMF313 [80]	0.153	-16.30	235.31 0.8	541.28	32.50 8	8.96 - 10.82	57.98	8 -339.96
Ska35s20 [187]	0.158	-16.08	240.27	378.65 33.	57 64.83	-120.32	284.54 -407.	.11 1.00	SQMC700 [157]	0.171	-15.49	222.20	369.94	33.47 5	9.06 -14	0.84 31	13.84 -39	6.85 0.76	VT [81]	0.	153 -	16.09	172.74 0.59	482.84	39.72	126.83 1	30.05	542.92 -276.41	RMF314 [80]	0.153	-16.30	234.43 0.8	543.28	32.50 8	8.92 -11.01	58.36	∂ –338.47
Ska35s25 [187]	0.158	-16.14	241.30	378.94 36.	98 98.89	-23.57	97.46 -461.	60 0.99	SQMC750 [157]	0.171	-15.60	222.86	365.83	33.75	4.67 -11	7.51 28	8.41 -39	9.38 0.74					$\sigma^{3} + \sigma^{4} + i$	ad models (t	type 3)				RMF315 [80]	0.153	-16.30	234.01 0.8	544.27	32.50 8	8.91 -11.10	58.55	5 -337.76
Ska45s20 [187]	0.156	-16.08	260.21	330.55 33.	39 66.21	-119.99	251.77 -433.	.13 1.02	SSk [51]	0.161	-16.16	229.31	375.38	33.50 5	2.78 -11	9.15 48	\$2.24 -34	9.42 0.72	BM-A [10	02] 0.	179 -	15.17	188.32 0.61	436.32	19.62	51.88 -	18.05 -	-36.02 -209.14	RMF316 [80]	0.153	-16.30	233.57 0.8	545.22	32.50 8	8.89 -11.20	58.74	4 -337.02
SkB [186]	0.155	-15.99	263.16	300.13 23.	88 47.54	-78.46	174.54 -309.	50 0.61	SV [183]	0.155	-16.05	305.70	175.78	32.82 9	6.09 2	9.17 4	8.00 -49	7.11 0.38	BM-B [10	02] 0.	156 -	13.47	170.77 0.64	504.54	17.42	45.46 -	15.61	-5.33 -154.06	RMF317 [80]	0.153	-16.30	232.70 0.8	547.17	32.50 8	8.85 -11.38	59.12	2 -335.55
SkI1 [188]	0.160	-15.95	242.75	346.14 37.	53 161.05	234.67	-328.02 -502.	01 0.69	SV-bas [115]	0.160	-15.91	233.45	379.28	30.00 \$	2.37 -22	1.75 41	0.93 -36	3.36 0.90	BM-C [10	02] 0.	142 -	12.36	163.10 0.65	547.19	16.01	41.49 -	14.20	7.05 -123.94	RMF401 [80]	0.153	-16.30	229.99 0.7	477.86	32.50 9	3.79 23.04	100.51	1 -344.81
SkI2 [188]	0.158	-15.78	240.93	339.70 33.	37 104.33	70.69	51.62 -408.	21 0.68	SV-min [115]	0.161	-15.91	221.76	403.08	30.66 4	4.81 -15	0.57 38	9.56 -34	3.99 0.95	DJM [102	η ο.	172 -	14.81	244.73 0.57	-147.54	20.21	62.95	32.66 -	102.43 -383.00	RMF402 [80]	0.153	-16.30	231.99 0.7	469.28	32.50 9	3.77 22.74	97.75	5 -350.20
SkI3 [188]	0.158	-15.98	258.19	303.86 34.	83 100.53	73.04	211.54 -411.	80 0.58	SVI [183]	0.143	-15.76	363.64	-153.50	26.88	7.34 -47	1.30 14	10.04 -42	4.18 0.95	-								Contine	ied on next page	RMF403 [80]	0.153	-16.30	229.99 0.7	486.57	32.50 9	3.13 18.06	90.88	5 -343.67
							Continued on 1	sext page								Ca	nunued or	next page	10																Cor	tinued on	n next page

Два явления, связанные с ⁸Ве: УРОВЕНЬ ХОЙЛА в ¹²С и ⁸Ве аномалия

$p + \frac{7}{3}Li \rightarrow \frac{8}{4}Be^* \rightarrow \frac{7}{3}Li + p$ $p + \frac{7}{3}Li \rightarrow \frac{8}{4}Be^* \rightarrow \frac{4}{2}He + \frac{4}{2}He$ $p + \frac{7}{3}Li \rightarrow \frac{8}{4}Be^* \rightarrow \frac{8}{4}Be + \gamma$

АТОМКІ эксперимент A.Krasznahorkay et. al. (ниже приводятся и обсуждаются результаты АТОМКІ) Поиск проявления массивной частицы в ядерных переходах. Идея Вильчека и др. в 70-х.

Примеры поиска скаляра в ядерных переходах

$$p(1.88 \text{ MeV}) + {}^{19}F \to \alpha + {}^{16}O^*(6.05)$$

 ${}^{16}O^*(6.05) \to {}^{16}O(GS) + \phi$

Kohler et al PRL 33, 1628 (1974)

Freedman et al. PRL 52, 240 (1984)

 $p + {}^3H \rightarrow {}^4He(20.1) \rightarrow 4He(GS) + \phi$

Только ограничения на массу и константу связи. В ядерных переходах искали и аксионы. Работ много, например, в ПИЯФ

Search for axions emitted in nuclear magnetic transitions A.V. Derbin, A.I. Egorov, I.A. Mitropolsky, V.N. Muratova, S.V. Bakhlanov, L.M. Tukhkonen (St. Petersburg, INP). 2002. 5 pp. Published in Phys.Atom.Nucl. 65 (2002) 1302-1306, Yad.Fiz. 65 (2002) 1335-1339

$p + \frac{7}{3}Li \rightarrow \frac{8}{4}Be^* \rightarrow \frac{8}{4}Be + \gamma$ MACCA Li-7 : 6533.83 MeV

State	$m \ ({ m MeV})$	$\Delta E \ ({\rm MeV})$	$\Gamma ~({\rm keV})$	$\Gamma_{\gamma} (eV)$	J_T^P
$^{8}\mathrm{Be}$	7454.85	0			0^{+}_{0}
${}^{8}\mathrm{Be}^{*}$	7473.00	18.15	138	1.9	1_{0}^{+}
${}^{8}\mathrm{Be}^{*\prime}$	7472.49	17.64	10.7	15	1_{1}^{+}

Протоны - Ван-Де-Грааф (Тандетрон) 2MB, 1 мкА Тонкая литиевая мишень Li₂O на алюминиевой полоске

 $Br\left({}^{8}_{4}Be^{*} \rightarrow {}^{8}_{4}Be + \gamma\right) \approx 1.5 \cdot 10^{-5}$

the e+e- spectrometer with five DSSD+ ΔE – E detector telescopes. The target is evaporated onto 10 µm Al strip foil spanned between 3 mm thick perspex rods to minimize the scattering and external pair creation in the vicinity of the target. The beam pipe is shown in black around which the ΔE and the DSSD detectors are arranged. The 1 mm thick ΔE detectors are shown in violet and red, while the E scinillators in yellow and their light guides are in blue. Распределение по углу между электроном и позитроном **θ** полезно для определения мультипольности ядерного перехода при изучении парной внутренней конверсии

Сканирование по энергии налетающих протонов и по переменной у |y|<0.5 и |y|>0.5 $T^{+} - T^{-}$ = $\frac{}{T^+ + T^-}$ Т – Кин. Энергии

электрона и позитрона

Отклонение наблюдается при энергии протонов, необходимой для резонансного возбуждения уровня, и при близости энергий электронов и позитронов |y|<0.5 Переход между уровнями ядра с испусканием массивной частицы, распадающейся на два лептона. Масса

$$m_{ee}^2 \approx (1-y^2)E^2sin^2rac{\sigma}{2}$$

$$E = T^+ + T^- + 2m_e$$

РЕЗУЛЬТАТЫ 2016 года с модернизированным детектором

Воспроизведен результат для уровня 18.15 МэВ и проявился тот же эффект при распаде уровня 17.64 МэВ

С учетом двух переходов масса сдвигается ближе к 17 Мэв Обнаруженный эффект до настоящего времени не удалось объяснить в рамках стандартной ядерной физики

Выход за рамки стандартной модели – новый легкий БОЗОН с массой 17 МэВ

• не скаляр

 Псевдоскаляр, аксиальный вектор и вектор не запрещены симметриями.

Псевдоскаляр ограничен экспериментально поисками АКСИОНА. *f_a*[GeV]

 Аксиальный вектор – трудно интерпретировать сложность ядерных расчетов

Изоскалярный переход. Взаимодействие с векторным током

$$J_{\mu} = \frac{1}{2} e \varepsilon \overline{N} \gamma_{\mu} N + \dots \qquad \varepsilon = \varepsilon_{p} + \varepsilon_{n}$$

$$\frac{Br({}^8_4Be^* \rightarrow {}^8_4Be + X) \cdot Br(X \rightarrow e^+e^-)}{Br({}^8_4Be^* \rightarrow {}^8_4Be + \gamma)} \approx 5.8 \cdot 10^{-6}$$

 $Br(X \rightarrow e^+e^-) = 1$ Пренебрегаем v и ү

В первом приближении ядерный матричный элемент сокращается в отношении ширин

$$\frac{\Gamma(Be^* \to BeX)}{\Gamma(Be^* \to Be\gamma)} \approx (\varepsilon_p + \varepsilon_n)^2 \left| \frac{p_X}{p_\gamma} \right|^3 \approx 5.8 \cdot 10^{-6}$$
Заряд в единицах е $\varepsilon \approx |\varepsilon_p + \varepsilon_n| \approx 0.011$

Связь Х с электронами

$$\Gamma(X \rightarrow e^+e^-) \approx \varepsilon_e^2 \alpha \frac{m_X^2 + 2m_e^2}{3m_X} \sqrt{1 - \frac{4m_e^2}{m_X^2}}$$

Распад в детекторе на длине несколько сантиметров. Для описания наблюдаемого эффекта

 $|\varepsilon_e| \ge (1\div 2)\cdot 10^{-5}$

темный фотон

- Существующие ограничения:
- NA48/2 распад $\pi^0 \rightarrow \gamma A \rightarrow \gamma e^+ e^-$
- Рассеяние электронов
 (beam dump & pair spectrometer)
 E141, A1, APEX

Аннигиляция: BABAR, KLOE

исключен экспериментом NA48

В более общем случае легкого (масса 17 МэВ) калибровочного векторного бозона, не связанного с электромагнитными зарядами, можно оценить константы связи из Ве и из NA48 через аномалию. Тогда

> $\varepsilon_u + \varepsilon_d \approx 0.004$ $2\varepsilon_u + \varepsilon_d \approx 0.0008$ $\varepsilon_p \approx 0.0008$ $\varepsilon_n \approx 0.01$

Protophobic vector boson (Feng et al)

ПЕРСПЕКТИВЫ

MESA: eA->eA2e - 2020 VEPP3: e+e- -> gamma A' Darklight: ep-> epe+e- 2020 HPS : eA-> eAe+e- 2020 MU3e: \mu ->3e 2019-2020 • Если возможность существования бозона с массой 17 МэВ в любом варианте теории будет исключена

экспериментально, как объяснить результат АТОМКІ?

 Поскольку 6.8 о аргумент серьезный, либо необходим аналогичный эксперимент, либо указания на ошибки в эксперименте ATOMKI