CSC aging studies and future plan/milestouns

G. Gavrilov

15 October 2019

Longevity studies for CSC:

- Longevity for CSC is proved for the nominal CSC gas mixture (10%CF4) for the highest ME1/1 and ME2/1 occupancy regions, for HL-LHC conditions with a safety factor 3
 - GIF++ : close loop gas system, uniform irradiation, two types of chambers

No performance degradation was observed with 40%Ar + 50%CO₂ + 10% CF₄

Longevity studies for CSC: 40%Ar + 50%CO₂ + 10% CF₄

Longevity studies for CSC:

40%Ar + 50%CO₂ + 10% CF₄

⁹⁰Sr irradiation current 1 μA !

Cathode intently contaminated with RTV, finger prints and soldering flux.

No performance degradation was observed in longevity tests with CSC prototypes in PNPI

Longevity studies for CSC with reduced amount of CF₄

Following the common approach of reducing usage of nonecological gases, we performed studies with a reduced amount of CF_4

- Lab tests with small CSC prototypes and fast local irradiation with Cd for gas mixtures containing 10%, 5%, 2% and 0% CF₄
- Muon detection performance and longevity tests at GIF++ with 2% CF₄:
 - Muon detection performance (ME1/1, ME2/1) was found to be similar for 10% and 2% CF₄ gas mixtures
 - GIF++ longevity test with ME1/1 chamber was continued using 2% CF₄ gas mixture
 - Also a longevity test with a small prototype was done (relatively slow uniform irradiation, prototype material correspond to ME2/1 chamber type)

CSC spatial resolution as a function of background intensity for nominal (10%) and 2% CF4 gas mixtures

Longevity studies for CSC with reduced amount of CF₄

37%Ar + 61.3%CO₂ + 1.7% CF₄

Longevity studies for CSC with reduced amount of CF₄

• No significant degradation in chamber performance was observed neither with prototypes up to 3xHL-LHC accumulated charge, nor with ME1/1 chamber which accumulated additional 2xHL-LHC charge up to now

 Irradiated prototypes were disassembled and cathode surfaces and anode wires are being carefully studied with SEM/EDS and more dedicated analysis techniques

Longevity studies for CSC with reduced amount of CF₄

Comparison of SEM/EDS results for the electrode surfaces irradiated with gas mixtures containing 5% and 2% CF4:

Cathode surface: different ratio between O and F presence on the cathode

5% CF₄

5% CF₄

Reference

2% CF₄

Center of

irradiated

zone

2% CF₄

Q LON

 Zone

 F4

 A definite presence of the dark flakes (Carbon?) on the irradiates wires at 2% CF4 !!

2% CF₄

Outside

region of

irradiated

Метод энергодисперсионной рентгеновской спектроскопии (<u>англ.</u> *Energy-dispersive X-ray spectroscopy*, **EDX**, **EDRS** или **EDS**) — аналитический метод <u>элементного</u> анализа твёрдого вещества, базирующийся на анализе энергии эмиссии его рентгеновского спектра, вариант <u>рентгеноспектрального анализа</u>.

Motivation of choice:

- □ The hydrofluoroolefine HFO_{1234ze} (CF3CH=CHF) is a refrigerant gas which was proposed as a replacement to CF4;
- □ HFO_{1234ze} has an extremely low global warming potential on a hundred years horizon GWP < 1.
- **O**zone Depletion Potential (ODP) of HFO_{1234ze} in CCl_3F units ODP = 0

Electron swarm parameters of the hydrofluoroolefine HFO1234ze

A. Chachereau, M. Rabie, C. M. Franck, Power Systems and High Voltage Laboratories, ETH Zurich, Physikstr. 3, 8092 Zurich, Switzerland. E-mail: alisec@ethz.ch

Figure 4: (a) Electron drift velocity v_e and (b) density normalized longitudinal electron diffusion coefficient ND_L in HFO1234ze, N₂, CO₂ and Ar as a function of E/N.

Figure 8: (a) Effective ionization rate coefficient, (b) electron drift velocity and (c) density normalized longitudinal electron diffusion coefficient in pure Ar and in the mixtures of 0.2%, 0.9% and 2.8% HFO1234ze in Ar as a function of E/N.

 Table 1. Summary of various refrigerant candidates. Also shown is the Chemical Abstracts Service (CAS)
 Registry Number.

Molecular name	Chemical formula	CAS	Refrigerant identifier	GWP	ODP
Chloropentafluoroethane	C ₂ ClF ₅	76-15-3	R115 [49]	7370	0.44
Hexafluoroethane	C_2F_6	76-16-4	R116 [47]	-	-
2,2-Dicloro-1,1,1- trifluoroethane	$C_2HCl_2F_3$	306-83-2	R123 [38]	120	0
1-Chloro-3,3,3- Trifluoropropene	$C_3H_2ClF_3$	2730-43-0	R1233zd [45]	4.7-7	0
2,3,3,3-Tetrafluoropropene	$C_3H_2F_4$	754-12-1	R1234yf [46]	4	0
1.3.3.3 Tetrafluoropropene	$C_3H_2F_4$	29118-24-9	R1234ze [43]	6	0
Trifluoroiodomethane	CF ₃ I	2314-97-8	R1311 [44]	0.4	0.01-0.02
1,1,1,2-Tetrafluoroethane	CH ₂ FCF ₃	811-97-2	R134a [35]	1430	0
Tetrafluoromethane	CF ₄	75-73-0	R14 [31]	7390	0
1,1,1-trifluoroethane	CH ₃ CF ₃	420-46-2	R143a [30]	4300	
1,1-Difluoroethane	$C_2H_4F_2$	75-37-6	R152a [51]	124	0
Octafluoropropane	C_3F_8	76-19-7	R218 [40]	-	-
Propane	C_3H_8	74-98-6	R290 [39]	3	0
Difluoromethane	CH ₂ F ₂	75-10-5	R32 [48]	650	0
Isobutane	$C_4 H_{10}$	75-28-5	R600a [42]	3	0
Sulfur Hexafluoride	SF ₆	2551-62-4	R7146 [32]	23000	0.04
Carbon Dioxide	CO2	124-38-9	R744 [37]	1	0
Octafluorocyclobutane	C_4F_8	115-25-3	R318 [41]	-	
Pentafluoroethane	HF ₂ CF ₃	354-33-6	R125 [28]	3400	0
Trifluoromethane	CHF ₃	75-46-7	R23 [29]	0	0
R409:	CHClF ₂	75-45-6 2837- 89-0 75-68-3	R22 (60%), R142b (25%), R124 (15%)	1700-620	0.5/0.065/0.02
R407c:	CH ₂ F ₂ . CF ₃ CHF ₂ . CH2FCF ₃	75-10-5, 354- 33-6, 811-97-2	R32 (21-25%), R125 (23-27%), R134a (50-54%)	650 3400 1430	000

Freon :	 [eV]	$\left(\frac{-dE}{dx}\right)_{min}$ [MeV g·cm ⁻²]	X 0 [g·cm ⁻²]	<i>N</i> _p [cm ⁻¹]
CF ₄ — Tetrafluoromethane (R14)	107.1	1.70	33.99	63.6
CF ₃ CH=CHF – Hydrofluoroolefine (R1234ze, HFO _{1234ze})	91.97	1.77	35.82	89.5
iC ₄ H ₁₀ – isobutane (R600a)	47.85	2.24	45.23	81.0

G. Saviano et al.,

Properties of potential eco-friendly gas replacement for particle detectors in high –energy physics //Journal of Instrumentation, 2018, 13 P03012

R1234ze [43]	114.0	4.82	-29	1/0/0	-
Incompatible with strongly oxidizing materials and finely divided Mg and Al.					
If involved in a fire, production under thermal decompose into pyrolysis products containing Fluorine, Carbon					
Monoxide, Carbonyl halides, and Hydrogen halides can occur. Polymerization may also occur.					

Very first performance studies of a CSC prototype operated with HFO_{1234ze} were done at CSC 904 lab comparing Ar/CO₂/CF₄ and Ar/CO₂/ HFO_{1234ze} 40% / 58% / 2% gas mixtures

Gas gain measured by ionization current method

H	IFO: 2%	CF4:	10%	2%
HV,	V: 3850		3750	3800

⁹⁰Sr current during irradiation

Gas Gain degradation starts from ~1000 mC cm⁻¹
 Gas Gain reduces only on the irradiated wires, that is an indication of the anode wire aging

x 800 anode point E, wire #4

CONCLUSION

- Longevity for CSC is proved for the nominal CSC gas mixture (10%CF4). No performance degradation was observed for HL-LHC conditions with a safety factor 3.
- No degradation in chamber performance was observed neither with prototypes up to 3xHL-LHC accumulated charge, nor with ME1/1 chamber which accumulated additional 2xHL-LHC charge for the gas mixtures with reduced CF₄ contain
- 2%HFO_{1234ze} provides similar operation conditions as 10%CF4 containing CSCs gas mixture and up to Q ~ 800 mC/cm no any degradation of the amplitude and dark current is observed.
- □ A swelling effect on the anode wires in the prototype with 2%HFO_{1234ze} gas mixture appears at Q ~ 1000 mC/cm.
- To conclude about cathode plane and anode wires degradation, SEM/XEM study of the samples have to be done. A cross-check test with CSCs at GIF++ have to be performed.

Backup

Oxygen generation in gas avalanche in the range of electric field of 10-100 kV/cm Calculations with Magboltz&Garfield for 40%Ar+50%CO2+10%CF4

G.Gavrilov, Muon Upgrade Workshop

Cathode damages

Craters

Flaking

SampleNumber of point
like objectsC153E-D261H277E-H284Ef216

CSC prototype for longevity tests in PNPI

- 2 planes, each with 7 controlled anode wires;
- 50 µm gold-coated anode wire;
- 285 × 270 mm² sensitive area, 693 cm³ gas volume;
- S = 3 mm ;
- L = 4.5 mm ;
- Identical geometry and construction materials to CSC
- Gas flow during aging test was 2 sccm
- that is ~ 4 Volume per day ;

BUT

- $\circ\,$ Readout $\,$ from anode wires only ;
- $\circ\,$ No gas recirculation is applied ;
- HV applied to the cathode.

Figure 7. (a) Effective ionization rate coefficient, (b) electron drift velocity and (c) density normalized longitudinal electron diffusion coefficient in pure CO_2 and in mixtures of 0.5% and 1.2% HFO1234ze in CO_2 as a function of *E/N*.

IOP Publishing

Plasma Sources Sci. Technol. 25 (2016) 045005 (12pp)

Plasma Sources Science and Technology doi:10.1088/0963-0252/25/4/045005

Electron swarm parameters of the hydrofluoroolefine HFO1234ze

A Chachereau, M Rabie and C M Franck

Power Systems and High Voltage Laboratories, ETH Zurich, Physikstr. 3, 8092 Zurich, Switzerland E-mail: alisec@ethz.ch

Malter effect checking tests, that have been done after each irradiation run

Dark current

HV=4100 V **Q =56 mC/cm**

Test with ⁹⁰Sr

