

Новые результаты LHCb по исследованию тетракварков

Дзюба Алексей / ЛБФ ОФВЭ ФГБУ ПИЯФ НИЦ КИ 22 сентября 2020, Семинар ОФВЭ

План доклада

- История исследования тетракварков (с фокусом на **\chi_{c1}(3872)**)
- Первое измерение ширины распада <u> χ_{c1} (3872)</u>
- Модельно-независимые исследования и амплитудный анализ распада В⁺→D⁺D⁻K⁺. Обнаружение указаний на новые резонансы: Х₀(2900) и Х₁(2900):
 - тетракварки с открытым очарованием
- Обнаружение структуры в спектре парного рождения *J/ψ*-мезонов, и её интерпретация как резонанса *Х(6900)*
 - (сссс)-тетракварк

«Экзотические» кварковые конфигурации

В своих пионерских работах по кварковой теории Гелл-Манн и Цвейг предположили наличие не только известных на тот момент типов адронов:

- мезонов (*qq*),
- барионов (*qqq*)

но и экзотических адронов:

- тетракварков (*qqqq*),
- пентакварков (qqqqq)

Volume 8, number 3

PHYSICS LETTERS

1 February 1964

A SCHEMATIC MODEL OF BARYONS AND MESONS

M.GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{14}$. We then refer to the members u_3^2 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \overline{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q \overline{q} \overline{q})$, etc., while mesons are made out of $(q \overline{q})$, $(q q \overline{q} \overline{q})$, etc. It is assuming that the lowest baryon configuration (q q) gives just the representations 1, 8, and 10 that have been observed, while

Обнаружение экзотики

2003 год заявления об обнаружении:

- $\Theta^+(1540)$ (до сих пор нет окончательного понимания)
- X(3872), Phys. Rev. Lett. 91 (2003) 262001

2000-е Много кандидатов нейтральные тетракварки

• См. обзор Phys. Rept. 429 (2006) 243

2008 Belle, Phys. Rev. Lett.100 142001, 2014 LHCb

Заряженный тетракварк: Z(4430)⁻ → ψ'π⁻

2015 LHCb, Phys. Rev. Lett. 115 (2015) 072001

 обнаружение пентакварков со скрытым очарованием в распаде: ∧_b → J/ψ p K⁻

2017 LHCb, Phys. Rev. Lett. 122 (2019) 222001

- Узкая структура *P_c*(4312)⁺
- Широкая структура, расщепляется на *P_c*(4440)⁺ и *P_c*(4457)⁺

2020 LHCb: Only-charm / open-charm тетракварки? (тема этого семинара)

/KLM

TOF

B-meson decays are well suited for charmonium searches [3]. In 2002, Belle found the $\eta_c(2S)$ in $B \rightarrow K K_S K \pi$ decays [4]. Here we report the 1st observation of a narrow state in $B \rightarrow K \pi^+\pi^- J/\psi$ decays. This could either be the ³D_{c2}, a *DD*⁺ molecular state [5], or some mixture of the two.

The Belle detector [1] runs at KEKB [2], an asymmetric energy e⁺e⁻ collider operating at the $\Upsilon(4S)$ (\sqrt{s} =10.6 GeV) with world-record-setting luminosity of $L = 10^{34}$ cm⁻²s⁻⁴.

Тетракварки

Некоторые, но далеко не все, тетракварки (и пентакварки) обнаружены на пороге рождения систем с открытым очарованием →

Возможная интерпретация Х(3872)

coupled channel system?

С. Ольсен, PhiPsi-19 <u>https://indico.inp.nsk.su/event/15/contributions/642/</u>

QCD hybrids?

hadrocharmonium?

threshold effects?

История исследования **\chi_{c1}(3872)**

- Открыт Belle (подтвержден измерениями CDF, D0, BaBar)
- Обнаружен не только в распадах прелестных частиц, но и интенсивно рождающимся при взаимодействии ультра-релятивистких адронов (Tevatron, LHC)
- Квантовые числа (J^{PC}=1⁺⁺, т.е $\chi_{c1}(3872)$) определены LHCb (Phys. Rev. Lett. 110, 222001) в цепочке распадов $B^+ \rightarrow X(3872)K^+$, $X(3872) \rightarrow \rho^0 J/\psi, \rho^0 \rightarrow \pi^+\pi^-$ и $J/\psi \rightarrow \mu^+\mu^-$

Теоретическая интерпретация *х*_{*с*1}(3872)

- Слишком узкий резонанс для чармониевой интерпретации
 - 127 MeV в ³*P*₀ модели и 16 MeV в *рКр*
- Трудности чисто молекулярной интерпретации:
 - $d_{\text{rms}}^{-1} \approx a^{-1} = \sqrt{2\mu |BE|} < m_{\pi} \Rightarrow BE < \frac{m_{\pi}^2}{2\mu} \approx 10 \text{ MeV} (\text{for } 2\mu = m_{D})$
 - Мезоны-конституенты должны иметь меньшую ширину, чем Г_{молекулы}

- Необходимы измерение ширины!
- Г<1,2 МэВ (90% CL) Belle

Produced promptly in HE pp collisions no isopspin-related states are seen

good description PTEP 9, 093D01 (2013)

PRD 71 014028 (2005) no 1⁺⁺ partner states seen

mass is 500 MeV below LQCD's lightest 1⁺⁺ hybrid

width is too narrow; mass too close to threshold

С. Ольсен, PhiPsi-19 <u>https://indico.inp.nsk.su/event/15/contributions/642/</u>

LHCb: Найти \ Идентифицировать \ Измерить

Измерение параметров $\chi_{c1}(3872)$

Инклюзивные измерения

- *arXiv:2005.13419* L_{int} = 3 φ6⁻¹
- **χ**_{c1}(3872) → π⁺π⁻ J/ψ канал
- События с распадом **b**-адронов
 - События-кандидаты должны формировать вторичную вершину (мягкий предотбор)
- Финальный отбор с применением нейронных сетей
 - 12 переменных, чувствительных к наличию вторичной вершины
- 15630 событий кандидатов
- Для контроля отбор распадов $\psi(2S)
 ightarrow \pi^+\pi^- J/\psi$

Брейт-Вигнеровская ширина

- СИГНАЛ: Свертка распределения
 Брейта-Вигнера с функцией
 разрешения (несколько моделей)
 - Основная систематика для Г_{вw} из варирования функции разрешения
- ФОН: гладкое распределение (+несколько альтернативных моделей)

 $(m_{J/\psi\pi^{+}\pi^{-}} - m_{J/\psi} - 2m_{\pi^{\pm}})^{c_{0}} e^{-m_{J/\psi\pi^{+}\pi^{-}}/c_{1}}$

 Следует быть осторожным с интерпретацией, т.к.

$$\left| m_{D^0} + m_{\overline{D}^{*0}} - m_{\chi_{c1}(3872)} \right| < \Gamma_{\rm BW}$$

Year	$p_{\pi^+\pi^-}$ [GeV]	$\Delta m [\text{MeV}]$	$\Gamma_{\rm BW}$ [MeV]	
2011 2011 2011 2012 2012 2012	$p_{\pi^{+}\pi^{-}} < 12$ $12 \le p_{\pi^{+}\pi^{-}} < 20$ $20 \le p_{\pi^{+}\pi^{-}} < 50$ $p_{\pi^{+}\pi^{-}} < 12$ $12 \le p_{\pi^{+}\pi^{-}} < 20$ $20 \le p_{\pi^{+}\pi^{-}} < 50$	$\begin{array}{rrrr} 185.32 & \pm 0.20 \\ 185.78 & \pm 0.21 \\ 185.46 & \pm 0.21 \\ 185.63 & \pm 0.13 \\ 185.47 & \pm 0.14 \\ 185.81 & \pm 0.15 \end{array}$	$\begin{array}{c} 1.88 \pm 0.74 \\ 1.53 \pm 0.74 \\ 1.03 \pm 0.82 \\ 1.23 \pm 0.47 \\ 1.48 \pm 0.48 \\ 1.15 \pm 0.57 \end{array}$	
Total	$20 \leq p \pi + \pi^{-1} \leq 00$	185.588 ± 0.067	1.39 ± 0.24	
Sour	се	Uncer	tainty [MeV]	
<u>Mon</u> Radi Fitte Signa	entum scale ative corrections ed $\psi(2S)$ mass uncerta al + background mode	inty el	0.066 0.014 0.007 0.002	
Sum	in quadrature		0.068	
$m_{\chi_{c1}(3872)} = 3871.695 \pm 0.067 \pm 0.068 \pm 0.010 \mathrm{MeV}$, $\Gamma_{\mathrm{PW}} = 1.39 \pm 0.24 \pm 0.10 \mathrm{MeV}$				

Г_{вW} из распадов **В⁺→ \chi_{c1}(3872)K^+**

- Определение Г_{вw} из эксклюзивного распада В⁺ мезона
- Использована вся статистика LHCb, накопленная в Run I и II (9 фб⁻¹)
- Отбор с использованием бустинга над решающими деревьями (BDT)
- Валидация с использованием $\psi(2S) o \pi^+\pi^- J/\psi$
- Чувствительность к Г_{вw} на уровне 200 кэВ

 $\Gamma_{\chi_{c1}(3872)} = 0.96^{+0.19}_{-0.18} \pm 0.21 \,\text{MeV}$

Распределения Флатте

- Введено для описания распадов

 a₀(980) и *f₀(980)* мезонов, для которых
 порог открытия *К<u>К</u>*-канала распада
 выше массы резонанса
- Сейчас широко используется релятивистская версия распределения Флатте
- Для случая <u>x_{c1}(3872)</u> нерелятивистская формула, но требуется учет заряженного и нейтрального DD*каналов, а также естественной ширины D*, распада на три пиона и других возможных каналов

$$\frac{dR(J/\psi \pi^{+}\pi^{-})}{dE} \propto \frac{\Gamma_{\rho}(E)}{|D(E)|^{2}}, \qquad \Gamma_{\rho}(E) = f_{\rho} \int_{2m_{\pi}}^{M(E)} \frac{dm'}{2\pi} \frac{q(m', E) \Gamma_{\rho}}{(m' - m_{\rho})^{2} + \Gamma_{\rho}^{2}/4}, \\ \Gamma_{\omega}(E) = f_{\omega} \int_{3m_{\pi}}^{M(E)} \frac{dm'}{2\pi} \frac{q(m', E) \Gamma_{\omega}}{(m' - m_{\omega})^{2} + \Gamma_{\omega}^{2}/4}.$$

$$D(E) = E - E_f + \frac{i}{2} \left[g \left(k_1 + k_2 \right) + \Gamma_{\rho}(E) + \Gamma_{\omega}(E) + \Gamma_0 \right].$$

$$k_1 = \sqrt{2\mu_1 E}, \quad k_2 = \sqrt{2\mu_2 (E - \delta)} \quad \delta = 8.2 \,\text{MeV}$$

Пять свободных параметров

arXiv:2005.13419

13

Распределение Флатте

- Константы двух и трехпионного распадов одинаковые, а масса фиксированна
- Три свободных параметра
- Теоретическое значение для ширины

 $\Gamma_{D^*} = 65.5 \pm 15.4 \text{ keV}$

 $k_1'(E) = \sqrt{-2\mu \left(E - E_R + i\Gamma_{D^{*0}}/2\right)},$

	g	$f_{ ho}$ >	$< 10^{3}$	Γ_0 [MeV]	m_0 [MeV]
	0.108 ± 0.0	03 1.8:	± 0.6	1.4 ± 0.4	4 38	64.5 (fixe	ed)
Sys	tematic	9)	$f_{ ho} \times$	10^{3}	Γ_0 [N	IeV]
Mo Mo Thi D* ⁰	del mentum scale reshold mass ⁾ width	+ 0.003 + 0.003 + 0.003	-0.004 -0.003 -0.003 -0.001	+ 0.6 + 0.1 + 0.2	$-0.5 \\ -0.2 \\ -0.2$	+ 0.5 + 0.1 + 0.2	$-0.4 \\ -0.2 \\ -0.3 \\ -0.2$
Sur	n in quadrature	+ 0.005	-0.006	+ 0.7	-0.6	+0.6	-0.6

$$g = 0.108 \pm 0.003^{+0.005}_{-0.006},$$

$$f_{\rho} = (1.8 \pm 0.6^{+0.7}_{-0.6}) \times 10^{-3},$$

$$\Gamma_{0} = 1.4 \pm 0.4 \pm 0.6 \text{ MeV},$$

Сравнение BW и Флатте

a.u.

 $3(J/\psi \pi^+\pi)$

- После свертки с функцией разрешения результаты неотличимы
- Псевдоэксперименты
- Розыгрыш параметров *χ_{c1}(3872)* → функция разрешения + фоновое распределение → определение параметров распределения Брейта-Вигнера
- Согласие между подходами

Полюса и доля «компактной» компоненты

- Аналитическое продолжение энергии в область комплексных значений
- Полюсы на физических листах идентифицируются как связанные состояния, а на нефизических как адронные резонансы (если нет «порогов», то ReE → m, ReE → Γ)
- Параметры распределения Флатте для <u>**х**с1</u>(3872)) → два полюса

Тетракварки с открытым очарованием: *X₀(2900)* и *X₁(2900)*

Исследование распада $B^+ \rightarrow [K^- \pi^+ \pi^+]_{D^+} [K^+ \pi^- \pi^-]_{D^-} K^+$

- Использована вся статистика LHCb, накопленная в Run I и II (9 фб⁻¹)
- 2/3 адронный триггер, 1/3 независимый
- Бустинг над решающими деревями
 - Топологические переменные
 - Переменные идентификации
- Практически отсутствует комбинаторный фон и фон от частично восстановленных распадов.
- 1374 события кандидата (0,5% фона)

Модельно-независимое исследование

- Можно ли описать спектр используя только разложение по парциальным волнам DDсистемы? (шаг 20 МэВ/с²)
- Разложение по полиномам Лежандра:

$$h(D^+D^-)_{N_j^{\text{Data}}} = \cos(\theta(D^+D^-))$$
$$\langle Y_k^{U,j} \rangle = \sum_{l=1}^{N_j^{\text{Data}}} w_l P_k(h_l(D^+D^-))$$

• Применение к Монте-Карло

$$\eta_i = \frac{2}{N_j^{\text{Sim}}} \times \sum_{k=0}^{k_{\text{max}}} \langle Y_k^{U,j} \rangle P_k \left(h(D^+D^-) \right)$$

arXiv:2009.00025

Амплитудный анализ

 $F(\vec{x}) = R(m(D^+D^-)) \times$

 \mathscr{L}

• Аппроксимация диаграммы Далица в рамках изобарной модели

Релятивисткое распределение

Брейта-Вигнера

• Программный пакет Laura++ https://arxiv.org/abs/1711.09854

$$\mathcal{L} = \exp\left[-\sum_{c} \left(\frac{(p_{c} - \mu_{c})^{2}}{2\sigma_{c}^{2}}\right)\right] \prod_{j=1}^{N_{c}} (N_{sig}\mathscr{P}_{sig}(\vec{x}_{j}) + N_{bg}\mathscr{P}_{bg}(\vec{x}_{j}))$$

$$\mathcal{P}_{sig}(\vec{x}) = \frac{1}{\mathcal{N}} \times \epsilon_{total}(\vec{x}) \times |\mathscr{A}_{sig}(\vec{x})|^{2}$$

$$a_{sig}(\vec{x}) = \sum_{j=1}^{N} c_{j}F_{j}(\vec{x})$$

$$+D^{-}) \times T(\vec{p}, \vec{q}) \times X(|\vec{p}|) \times X(|\vec{q}|)$$

$$\int \int \int \int \sum_{j=1}^{N} c_{j}F_{j}(\vec{x})$$
Барьерный фактор (функции Блатта-Вайскопфа)

Амплитудный анализ

• Распределение для сигнала от чармониевых состояний

-	Partial wave (J ^{PC})	Resonance	Mass (MeV/c^2)	Width (MeV/c^2)
-	S wave (0 ⁺⁺)	χ _{c0} (3860)	3862 ± 39	201 ± 139
		X(3915)	3918.4 ± 1.9	20 ± 5
	P wave (1)	ψ(3770)	3778.1 ± 0.9	27.2 ± 1.0
Молельно-		ψ (4040)	4039 ± 1	80 ± 10
независимый	i	ψ (4160)	4191 ± 5	70 ± 10
анализ не		ψ (4260)	4230 ± 8	55 ± 19
учитывал этот	т	ψ (4415)	4421 ± 4	62 ± 20
резонанс	D wave (2 ⁺⁺)	χ _{c2} (3930)	3921.9 ± 0.6	36.6 ± 2.1
	F wave (3)	X(3842)	3842.71 ± 0.16 ± 0.12	$2.79 \pm 0.51 \pm 0.35$
-				

Малая экспериментально измеренная ширина

Только **DD**-резонансы

- Нельзя удовлетворительно описать спектр масс *D*-*K*⁺
- «Качество фита» для регионов диаграммы Далица

Реакция теоретиков

Amplitude analysis of the $B^+ \rightarrow D^+ D^- K^+$ decay	PAPER-2020-025	PRD	31 Aug 2020	9
Amplitude analysis of the D 7 D D A decay	arXiv:2009.00026 [PDF]	110	51 Aug 2020	[plot]
A model-independent study of resonant structure in $B^+ ightarrow D^+ D^- K^+$ decays	PAPER-2020-024 arXiv:2009.00025	PRL	31 Aug 2020	8 [plot]
	Discriminating a	among interpretat	tions for the $X(2900)$ states	
	T.J.	Burns E. S. Swanson	<u>arxiv:2009.05352</u>	
Intriguingly, we find that for the states, the channel with the largest discovery mode $B^+ \rightarrow D^+X, X \rightarrow$ because the $X(2900)$ signal can arise favoured process, mediated by triangle nances, whereas the experimental bac suppressed.	neutral $X(2900)$ fit fraction is the D^-K^+ . This is through a colour- e diagrams or reso- kground is colour-	or the same reason is		
B^0	$\rightarrow D^0 X, X \rightarrow \overline{D}^0 K^0$. We pr	edict a significant fit	Доступно на LHC	, b
frac	tion of around 23%, regardless	of the nature of the	(6 треков)	
X(2)	2900) states. Confronting this p	rediction with experi-	(•••••••••	
mer	nt would be a useful test of the o	central idea in our ap-		
pro	ach, which is that production is	dominated by colour-		
favo	oured processes.	A more at he new sining a	we deal we have above that there	
		Among the remaining i	nodes, we have shown that there	
	al	e characteristic pattern	s in production and decay which	ŝ
	a	scrimmate unamoiguot	isty between competing models.	

Указание на **Х(6900)**

Cross sections for $\sqrt{s_{pp}} = 13$ TeV for LHCb

Неупругое сечение :

62.2 ± 0.2 ± 2.5 mb

Очарованные кварки

с <u>с</u>	2369 ±3 ±152±118μb
D *	834 ±32 ± 78 μb
J/ψ	15.03 ±0.03 ±0.94 μb

JHEP 06 (2018) 100

JHEP 05 (2017) 074

JHEP 10 (2016) 172

Прелестные кварки

b <u>b</u>	144 ±1 ±21μb			
B ⁺	86.6 ±0.5 ±5.4±3.4 μb			
Y(1S)	4.68 ±0.01 ±0.29 nb			

PRL 118 (2017) 052002 JHEP 12 (2017) 026 JHEP 07 (2018) 134

 $\frac{\mathrm{d}\sigma}{\mathrm{d}X} = \sum_{j,k} \int_{\hat{X}} f_j(x_1, Q) f_k(x_2, Q) \ \frac{\mathrm{d}\hat{\sigma}_{jk}(Q)}{\mathrm{d}\hat{X}} \ F(\hat{X} \to X; Q) ,$

Теория более-менее согласуется с экспериментальными данными

Два жестких процесса в одном взаимодействии? -> Парное рождение J/ψ

Двойное рождение **J/**

- arXiv:2006.16957 / Science Bulletin
- Мюоны с *p_T>0,6* ГэВ/с и *p>*6 ГэВ/с
- Только из первичной вершины!
- В 0,8% случаев три кандидата (случайный выбор)
- 33570 +/- 230 событий отобрано
- Ожидалось, что SPS доминирует в области больших <mark>р_т для пары **J/ψ**</mark>
- Ожидалось, что DPS и SPS спектры разные в области малых масс ди-J/ψ
- Нерегулярность в спектре масс!

MeV/

Candidat

Neighted

Возможные сценарии

- Статистическая значимость отклонения от плавного распределения (DPS+NRSPS) >5σ
 - $T_{4c} \rightarrow 2 J/\psi$
 - $T_{4c} \rightarrow J/\psi \chi_c (\rightarrow \gamma J/\psi)$ feedown
 - Перерассеяние на пороге:
 - 6829,4 МэВ <u>X_{c0} X_{c0}</u>
 - 6925,4 МэВ <u>X_{c0} X_{c1}</u>
 - Интерференция *Т_{4с}* и NRSPS (если одинаковые квантовые числа)
- Две референсные модели:
 - Модель I: три резонанса
 - Модель II: интерференция вклада NRSPS и резонанса

*р*_Т-зависимость

- Модель I заметный вклад для р_т выше 6 ГэВ/с
- В рамках этой модели сложно описать провал в спектре масс
- Требуется привлечение вклада вблизи порога рождения пары *Ј/ψ*
- Для **Т**_{сссс}

$$N_{\rm sig} = 252 \pm 63,$$

 $m[X(6900)] = 6905 \pm 11 \pm 7 \,\text{MeV}/c^2$ $\Gamma[X(6900)] = 80 \pm 19 \pm 33 \,\text{MeV}$

arXiv:2006.16957

Модель II

$$\left|Ae^{i\phi}\sqrt{f_{\mathrm{nr}}(M_{\mathrm{di-}J/\psi})} + \mathrm{BW}(M_{\mathrm{di-}J/\psi})\right|^2$$

- Такая модель описывает провал в спектре масс
- Ширина состояния оказывается выше чем для Модели I

$$N_{\text{sig}} = 784 \pm 148.$$

 $m[X(6900)] = 6886 \pm 11 \pm 11 \text{ MeV}/c^2$
 $\Gamma[X(6900)] = 168 \pm 33 \pm 69 \text{ MeV}.$

Что говорит теория?

http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_all.html

Observation of structure in the J/ψ -pair mass spectrum	PAPER-2020-011 arXiv:2006.16957 [PDF]	Science Bulletin	30 Jun 2020	26 [plot]
	INTERPRETAT IN THE D Marek Karliner A	FION OF STRUCTU I-J/ψ SPECTRUM ¹ and Jonathan L. Rosner ⁴	RE	
S a t j C t a C b M	tructure in the di $-J/\psi$ mass spround 6.9 and 7.2 GeV is interpretent a $c\bar{c}$ diquark and a $\bar{c}\bar{c}$ ant inction picture to calculate tetrice via the likely dominated by the 0 etraquark, which we predict at 6. Scribed to the opening of the S -via eV could be correlated with the off the low-mass part of the di- J road resonance consistent with a $M_{\rm inv} = 6191.5 \pm 25$ MeV. Implicat	pectrum observed by the reted in terms of J^{PC} = idiquark, using a recent raquark masses. The m $^{++}(2S)$ state, a radial ex 871 ± 0.025 GeV. The dig wave di- χ_{c0} channel, while opening of the di- $\eta_c(2S)$ J/ψ structure appears to predicted $0^{++}(1S)$ state ions for $bb\bar{b}\bar{b}$ tetraquarks	te LHCb experiment $= 0^{++}$ resonances be- cly confirmed string- ain peak around 6.9 acitation of the $cc-\bar{c}\bar{c}$ p around 6.75 GeV is the dip around 7.2 channel. Description p require a low-mass are discussed.	3

Выводы

- LHCb фабрика экзотических адронов
- Впервые измерена естественная ширина **д**с1 (3872)
 - Г_{вw} из эксклюзивного канала распада $B^+ \rightarrow \chi_{c1}(3872)K^+$
 - Инклюзивные измерения: Г_{вw}, параметры распределения Флаттэ, исследование полюсов
 - Доля «компактной» компоненты 15-30%
- Модельно независимые указания на экзотику в распадах $B^+ \rightarrow D^+ D^- K^+$
- Амплитудный анализ распада В⁺→D⁺D⁻K⁺:
 - *X₀(2900)* и *X₁(2900)* тетракварки и открытым очарованием
- Структура в спектре парного рождения J/ψ
 - Тетракварковая интерпретация *qqqq*