QCD Instanton Hunting at the LHC

Instanton is the classical solution of QCD equations. A.A.Belavin, A.M.Polyakov, A.S.Schwatz and Yu.S.Tyupkin,

Phys.Lett.**59B**, 85 (1975)

$$A^a_{\mu}(x) = \frac{2}{g} \eta_{a\mu\nu} \frac{(x-x_0)_{\nu}}{(x-x_0)^2 + \rho^2}$$

$$\alpha_s = g^2/4\pi, \ \rho = \text{instanton radius},$$

$$\eta_{a\mu\nu} = 0 \text{ for } \mu = \nu = 4$$

$$\eta_{a\mu\nu} = -\delta_{a\nu} \text{ for } \mu = 4$$

$$\eta_{a\mu\nu} = \delta_{a\nu} \text{ for } \nu = 4$$

$$\eta_{a\mu\nu} = \epsilon_{a\mu\nu} \text{ for } \mu, \nu = 1, 2, 3$$

At $x \to \infty$ instanton is the pure gauge field

$$g\frac{\tau^a}{2}A^a_\mu\to iS\partial_\mu S^+$$
 with $S=i\tau^+_\mu x_\mu/\sqrt{x^2}$

However for $x \neq \infty$ it is the real transverse gluon field which describes the transition between two different (in gauge) QCD vacuums.

Figure 1. Instanton and Sphaleron processes in the topology of a Yang-Mills vacuum; energy density of the gauge field (y-axis) vs. winding number N_{CS} (x-axis).

Instanton was never observed

On another hand it is important in the theor. models of confinement and the chiral symmetry violation. $< 0|G^a_{\mu\nu}G^a_{\mu\nu}|0 > \neq 0$

Instanton signatures:

- large multiplicity
- \bullet large 'Sphericity', $S \to 1$
- presence of an additional light $\bar{q}_R q_L$ pairs

(in particular pair of strange (or charm, for the small size instanton) quarks)

Figure 2. Depiction of a QCD Instanton processes in electron-Figureproton (left) and proton-proton (right) collisions, where an ex-a QCternal scale parameter Q' is required.in proton

Figure 3. Depiction of a QCD Instanton processes in proton-proton (right) colli-

Instanton \neq the particle (no peak in M_{inst}) It is a family of objects of different size, ρ , and orientations in Lorentz and colour spaces

The statistical weight of size- ρ instanton is

$$D(\rho, \mu_R) = \frac{\kappa}{\rho^5} \left(\frac{2\pi}{\alpha_s(\mu_R)}\right)^6 (\rho\mu_R)^{b_0}$$

where $(\rho\mu_R)^{b_0} = \exp(2S^I)$ $S^I = 2\pi/\alpha_s$

 $\kappa = 0.0025 \exp(0.292N_f) \sim 0.01$

Note infrared divergence at large ρ

Elementary $gg \to I + \dots$ cross section at $\sqrt{s'} = M_{inst}$

	$\sqrt{s'}$ [GeV]	$1/\rho$ [GeV]	$\alpha_S(1/\mu$	(n_g)		$\hat{\sigma}$ [pb]			
	10.7	0.99	0.41	.6 4.59	4.92	$2 \cdot 10^{9}$			
	15.7	1.31	0.36	0 5.13	728.	$9 \cdot 10^{6}$			
	22.9	1.76	0.31	5 5.44	85.9	$4 \cdot 10^{6}$			
	29.7	2.12	0.29	3 6.02	17.2	$5 \cdot 10^{6}$			
	40.8	2.72	0.26	7 6.47	2.12	$1 \cdot 10^{6}$			
	56.1	3.50	0.24	5 6.92	229.	$0 \cdot 10^{3}$			
	61.8	3.64	0.22	3 7.28	72.9	$7 \cdot 10^3$			
	$\sqrt{s'_{\min}} \; [\text{GeV}]$	20	50	100	200	500			
	$\sigma_{pp \to I}$	6.32 mb	$40.82~\mu\mathrm{b}$	79.95 nb	$105.4~\rm pb$	3.54 fb			

Table 2. Hadronic cross sections for instanton production through initial gluons, at the 13 TeV LHC, using the NNPDF3.1 NNLO set with $\alpha_s(M_Z) = 0.118$ [67].

V.V. Khoze, F. Krauss, M. Schott, 1911.09726

 $\sigma(pp \to I) \sim 1/M_{inst}^7$

Background

300000 1. Multiple parton interactions (Double/Triple/... parton scattering) 800 x'3666x'266601 Large at small M_{inst} $\frac{d\sigma}{dp_1...dp_n} \sim \left(\frac{d\sigma}{\sigma_{eff}dp_1} \dots \frac{d\sigma}{\sigma_{eff}dp_n}\right) \sigma_{eff}$ $\sigma_{eff} \sim 10 \text{ mb}$

 $\sigma(gg \to Njets) \sim \sigma(gg \to I)$ at $M_{inst} > 200 \text{ GeV}$

a) To select Q^2 in DIS (or $q_{T,jet}$) (A. Ringwald, F.Schrempp, PL B438 (1998) 217)

b) To select events with $\sum_i E_{T,i} > E_{cut}$ in some $\Delta \eta$ interval.

- Instanton event large N_{ch} (due to N_{jets}) but not too large $\sum E_{T,i}$ since $(\langle k_t \rangle \sim 1.5/\rho)$
- Sphericity $S = (3/2)(\lambda_2 + \lambda_3)$ close to 1 $\lambda_1 > \lambda_2 > \lambda_3$ are the eigenvalues of $S^{\alpha\beta}$

$$S^{\alpha\beta} = \frac{\Sigma p_i^{\alpha} p_i^{\beta}}{\Sigma \left| \vec{p}_i^2 \right|}$$

• extra $(\bar{s}s)$ pair of strange particles

	Signal Region		Control Region		
	Standard	Event-	Tight	А	В
		Shape			
Invariant mass of rec. tracks (Instanton Mass), m_I	$20 \text{ GeV} < m_I < 40 \text{ GeV}$				
Selection Requirements					
Number of rec. tracks, N_{Trk}	>20	> 20	> 20	> 15	> 20
Number of rec. tracks/Instanton mass, m_I/N_{Trk}	$<\!\!1.5$	$<\!\!1.5$	< 1.5	> 2.0	${<}1.5$
Number of Jets, N_{Jets}	=0	=0	=0	=0	=0
Broadening, $\mathcal{B}_{\text{Tracks}}$		> 0.3	> 0.3	> 0.3	> 0.3
Thrust, $\mathcal{T}_{\mathrm{Tracks}}$		> 0.3	> 0.3	> 0.3	> 0.3
Number of displaced vertices, $N_{\text{Displaced}}$			>6		$<\!4$
Expected Events for $\int Ldt = 1 \text{pb}^{-1}$ in	the Signal I	Region (\mathcal{S})	>0.85)		
N _{Signal}	$1.1 \cdot 10^7$	$8.9\cdot 10^6$	$5.9\cdot 10^6$	<1	$6.8 \cdot 10^5$
$N_{Background}$	$6.2\cdot 10^6$	$4.3 \cdot 10^6$	$1.8 \cdot 10^5$	$3 \cdot 10^5$.	$3.3 \cdot 10^6$

Table 3. Overview of the standard and tight signal selection as well as the definition of two control regions aiming at very low Instanton masses (20 GeV $< m_I < 40$ GeV)

	Signal Region			Control Region			
	Standard	Event-	Tight	А	В		
		Shape					
Invariant mass of rec. tracks (Instanton Mass), m_I	$200 \text{ GeV} < m_I < 300 \text{ GeV}$						
Selection Requirements							
Number of rec. tracks, N_{Trk}	>80	$>\!\!80$	$>\!\!80$	$>\!\!80$	$>\!\!80$		
Number of rec. tracks/Instanton mass, $m_I/N_{\rm Trk}$	<3.0	$<\!3.0$	<3.0	>3.0	${<}3.0$		
Number of Jets, N_{Jets}	3-6	3-6	3-6	3-6	3-6		
Broadening, $\mathcal{B}_{\text{Tracks}}$		> 0.3	> 0.3	> 0.3	> 0.3		
Thrust, $\mathcal{T}_{\mathrm{Tracks}}$		> 0.3	> 0.3	> 0.3	> 0.3		
Number of displaced vertices, $N_{\text{Displaced}}$			> 15		${<}10$		
Results							
Expected Events for $\int Ldt = 1 \mathrm{pb}^{-1}$ in the Signal Region ($\mathcal{S} > 0.85$)							
N_{Signal}	5.6	1.0	0.54	0.04	0.21		
$N_{Background}$	1900	9.6	0.64	200	1100		

Table 5. Overview of the standard and tight signal selection as well as the definition of two control regions aiming at very low Instanton masses (200 GeV $< m_I < 300$ GeV)

Simone Amoroso^{*a*} Deepak Kar^{*b*} Matthias Schott 2012.09120

THANK YOU

At $x \to \infty$ instanton is the pure gauge field

$$g\frac{\tau^a}{2}A^a_\mu\to iS\partial_\mu S^+$$
 with $S=i\tau^+_\mu x_\mu/\sqrt{x^2}$

However for $x \neq \infty$ it is the real transverse gluon field which describes the transition between two different (in gauge) QCD vacuums.