Рождение φ -мезонов в p+p, d+Au, Сu+Cu и Au+Au взаимодействиях при энергиях $\sqrt{s_{_{NV}}} = 62.4$ и 200 ГэВ в эксперименте ФЕНИКС

Д.О. Котов (ПИЯФ, СПбГПУ)

Коллайдер RHIC (Брукхейвенская национальная лаборатория, США) является одним из крупнейших действующих ускорителей по изучению взаимодействий пучков релятивистских ионов при высоких энергиях.

• КХД на решётке предсказывает адрон-кварковый фазовый переход ядерной материи в условиях экстремально больших плотностей энергии ($\epsilon > 1 \ \Gamma$ эВ/фм³) и температур ($T \sim 170$ МэВ);

• Подобные условия могут реализовываться в столкновениях тяжёлых релятивистских ядер

Система ядер	$\sqrt{\mathrm{s}_{\mathrm{N}}}$, ГэВ
Au+Au	7, 9, 39, 62, 130, 200
d+Au	200
Cu+Cu	22, 62, 200
p↑+p↑	22, 62, 200, 500

Актуальность (I)

В 2005 году ряд открытий позволил всем коллаборациям на RHIC сделать заявление об обнаружении сильновзаимодействующей кварк-глюонной плазмы – «идеальной жидкости» с партонными степенями свободы.

• Выход прямых ү не подавлен до $p_{T} \sim 14 \ \Gamma \Im B/c$:

✓ энергетические потери жёстких партонов в

плотной ядерной среде в конечном состоянии.

- ✓ идеальная жидкость с партонными степенями свободы;
- Нарушение скейлинга при КЕ_т/n_q > 1.0 ГэВ, говорит о включении иных механизмов рождения частиц.

Актуальность (II)

Температура среды, спектры рождения прямых фотонов

• Расчёты пКХД находятся в соответствии с результатами p+p до $p_{T} \sim 1 \ \Gamma \ni B/c$;

• Au+Au результаты превышают (p+p)*<N____ > при p_ < 2.5 ГэВ/с;

Актуальность (III)

• Эффект гашения струй – подавление выходов адронов в области больших $p_T > 5.0$ ГэВ/с:

 $\checkmark \pi^{o}$, ω , η - энергетические потери жестко рассеянных партонов (u, d, s кварки);

✓ Выход е_н обнаружил аналогичную для лёгких кварков степень подавления;

✓ Выход прямых ү не подавлен вплоть до $p_T \sim 14 \ \Gamma \ni B/c$, при $p_T > 14 \ \Gamma \ni B/c$ – изоспиновые эффекты.

Актуальной задачей является измерение выходов как можно большего количества различных типов частиц различной массы, в частности ф-мезонов (изучение энергетических потерь s-кварков в области больших поперечных импульсов).

- Неожиданный рост величин р/π от периферийных к центральным взаимодействиям ядер (т.н. барионная загадка) традиционно описывается рекомбинацией и наличием радиального потока (зависимость выхода от массы частицы).
- m(φ) ≈ m(p), при этом состоит из 2 кварков:

✓ тест для RECO и радиального потока.

• При $\sqrt{s_{_{NV}}}$ < 30 ГэВ подавления выходов частиц не наблюдалось: 30 < $\sqrt{s_{_{NV}}}$ (ГэВ) < 130 ГэВ;

• Необходимо отметить, что чаще всего физические циклы работ при низкой энергии сталкивающихся ядер обладают малым объёмом набранных для обработки данных:

✓ стоит ожидать существенных неопределенностей результатов измерений.

Эксперимент ФЕНИКС

Все измерения, вошедшие в работу, выполнены в эксперименте ФЕНИКС

Регистрация заряженных частиц:

- 1. Дрейфовые камеры (DC)
 - $\delta p/p = 0.7\% + 1.1\% \cdot p/p_o,$

 $(p_o = 1 \ \Gamma \ni B/c)$

2. Падовые камеры (РС1)

 σ_{Φ} =2.4 MM, σ_z =1.7 MM

- Идентификация заряженных частиц времяпролётной системой (TOF):
- 1/3 аксептанса одного плеча
- диапазон разделения π/К
 0.3 < p_T (ГэВ/с) < 2.2

Аксептанс: -0.35 < η < 0.35, Δφ – 2 x 90°

Треки заряженных частиц:

• восстанавливаются в ДК западного и восточного плеч: 🗶 и ≍

Методики измерения инвариантных спектров по $p_{T}(I)$

• Для измерений в области промежуточных (2.0 < p_T (ГэВ/с) < 5.0) и больших поперечных импульсов (p_T > 5.0 ГэВ/с) использование времяпролётной системы не представляется возможным;

• Существует возможность работать без идентификации частиц, основываясь на статистическом базисе:

 ✓ необходимо провести оценку эффективности регистрации и аксептанса установки методом Монте-Карло в данном случае.

 $p_{\rm T}$ < 2.0 ГэВ/с – идентификация 2 каонов;

2.0 <
р $_{\rm T}$ (ГэВ/с) < 5.0 – идентификация 1 каона / без идентификации;
 $$\rm p_{\rm T}>$ 5.0 ГэВ/с – без идентификации.

Возможно ли выделить сигнал, не идентифицируя каоны?

Методики измерения инвариантных спектров по p_{T} (II)

• Для формирования распределений по инвариантной массе, производился перебор всех заряженных треков:

✓ В столкновениях тяжелых ядер перед процедурой аппроксимации из спектра инвариантной массы вычитается некоррелированный комбинаторный фон, оцененный методом смешивания событий;

 Коррелированная часть комбинаторного фона (от распадов других частиц: К_s, ρ, ω, η и др.) оценивается путём аппроксимации полиномом.

Cu+Cu @ $\sqrt{s_{NN}} = 62.4 \text{ GeV}$

Методики измерения инвариантных спектров по р_т (III)

• Выход φ-мезонов определяется путем аппроксимации измеренного спектра инвариантной массы функцией, состоящей из полинома второй степени и функции Брейта-Вигнера, свернутой с распределением Гаусса:

✓ Выход принимается равным числу пар разнозаряженных частиц в спектре инвариантной массы после вычитания полинома вблизи массы φ-мезона в диапазоне по инвариантной массе 1,01 ГэВ/с² < М_{ив} < 1,028 ГэВ/с².</p> Методики измерения инвариантных спектров по p_т (IV) Одной из целей анализа данных является измерение инвариантных выходов *ф*-мезонов:

$$\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} = \frac{N^{\varphi}(p_T)}{2\pi p_T \cdot N_{\text{cof}} \cdot \varepsilon_{\text{mhow}} \cdot \varepsilon_{\text{akc}} \cdot BR \cdot \Delta p_T} \cdot \varepsilon_{\text{mputation}}$$

• є_{мык} – поправка на «потерю» треков в условиях большой множественности рождающихся частиц в ядро-ядерных взаимодействиях:

 ✓ оценивается путем введения в реальные данные смоделированных хитов каонов и сравнения числа восстановленных каонов с и без внедрения.

Систематические ошибки измерений

Cu+Cu взаимодействия при энергии $\sqrt{s_{NN}}$ = 200 GeV

P _T , GeV/c	1.5	1.7	1.9	2.1	2.45	2.95	3.45	3.95
Acceptance	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	3.0%	3.0%
Peak extr (MBS)	10.0%	11.0%	11.5	12.0%	13.0%	13.5%	14.0%	14.5%
Peak extr (0-10%)	12.5%	13.0%	13.5%	14.0%	14.5%	15.0%	16.0%	16.0%
Peak extr (30-40%)	11.0%	11.5%	12.0%	12.5%	13.5%	14.0%	14.5%	15.0%
Peak extr (60-94%)	10.0%	10.5%	11.0%	12.0%	12.0%	13.0%	13.5%	14.0%
Peak extr MC	3%							
Embedding (MBS)	1%							
Embedding (0-10%)	3%							
Embedding (30-40%)	1%							
Embedding (60-94%)	1%							
Momentum scale	1.0%	1.5%	1.5%	2.0%	2.0%	2.5%	3.0%	4.0%
Branching ratio	1 2%							
(PDG)	1.270							
Total (MBS)	12%	13%	13%	14%	14%	15%	15%	16%
Total (0-10%)	14%	15%	15%	16%	16%	17%	18%	18%
Total (30-40%)	12%	13%	14%	14%	15%	16%	16%	16%
Total (60-94%)	12%	12%	12%	13%	13%	14%	15%	15%

Инвариантные спектры рождения

• Диапазон измерений при
 $\sqrt{s}_{\scriptscriptstyle N\!N}$ = 200 ГэВ: 1.0 <
 $p_{\scriptscriptstyle T}$ < 7.0;

• Диапазон измерений при
 $\sqrt{s}_{\scriptscriptstyle N\!N}\,$ = 62.4 ГэВ: 1.1 < $p_{\scriptscriptstyle T}\!<$ 3.9 (3.1) Cu+Cu (Au+Au);

• Спектры рождения φ-мезонов в p+p и A+A взаимодействиях измерены в одинаковых «бинах» по поперечному импульсу p_т:

✓ R_A вычисляется отношением точка к точке, а не к значениям аппроксимации p+p спектра.

Достоверность измерений (I)

✓ Согласие отношений измеренных инвариантных выходов φ-мезонов к значениям аппроксимации инвариантного спектра рождения φ-мезонов (в области перекрытия двух методик по поперечному импульсу).

(Levi : nucl-th/9908459)

0.5

1.5

1

2

2.5

3

3.5

 p_{T}, Γ эB/C

 В области *p_T* > 2 ГэВ/*c*, где рождение адронов обусловлено фрагментацией партонов, отношение φ/π^o определяется функциями фрагментации для φ и π^o-мезонов и не зависит от энергии взаимодействия протонов:

 ✓ генератор РҮТНІА не позволяет адекватно описать наблюдаемую зависимость – предмет для теоретического исследования.

Факторы ядерной модификации

• *р*+*р* взаимодействия:

 $\ensuremath{\textcircled{\otimes}}$ точечные при p_T > 2 ГэВ/с \rightarrow процессы рождения частиц описываются фрагментацией жёстко рассеянных партонов;

• Изучение коллективных эффектов в А+А взаимодействиях:

$$R_{AA}(p_T) = \frac{dN_{AA}}{\langle N_{\text{столкн}} \rangle \cdot dN_{pp}}$$

Центральность, %	$\left< N_{ m yq} \right>$	$\left< N_{\rm ctorkh} \right>$
Без отбора по центральности	8.6±0.5	8.4±0.3
0–20	15.6±0.9	15.4±1.0
20–40	11.1±0.6	10.6±0.7
40–60	7.7±0.4	7.0±0.6
60–88	4.2±0.3	3.1±0.3

d+Au взаимодействия

Au+Au взаимодействия

Центральность, %	$\left< N_{ m yr} \right>$	$\left< N_{\rm ctoreh} \right>$		
Без отбора по центральности	118.2±5.5	255.0±38.3		
0–20	275.6±8.5	691.5±112.4		
20–40	138.1±6.2	268.5± 36.7		
40-83.7	37.1±2.3	48.5± 5.3		

- изучение модификаций в выходах частиц во взаимодействиях ядер в области $p_T > 2 \ \Gamma \Rightarrow B/c;$
- $R_{A\!\!A} \approx 1$ в условиях отсутствия коллективных эффектов;
- $R_{_{\!M\!}}$ < или > 1 \rightarrow подавление/избыток выхода частиц;

d+Аи взаимодействия: *R*_d

Не образуется плотной ядерной среды → изучение эффектов холодной ядерной материи в "чистом виде".

• В центральных взаимодействиях:

 $\odot R_{dA}(\phi) \approx R_{dA}(\pi^{o});$

- В периферийных взаимодействиях: одинаковое поведение факторов ядерной модификации для мезонов и незначительный избыток протонов.
- Подобный избыток наблюдался на SPS, AGS → эффект Кронина:

 ✓ объяснялся через многократное мягкое перерассеяние партонов в начальном состоянии → трудности с описанием зависимости величины избытка от типа рождающейся частицы.

A+*A* взаимодействия при $\sqrt{s_N}$ = 200 ГэВ: R_A

• В центральных *A*+*A* взаимодействиях выход φ-мезонов подавлен:

 \odot В области промежуточных $p_T : R_{A\!A}(\pi^{\circ}) < R_{A\!A}(\phi) < R_{A\!A}(p);$

 \odot В доступной области по p_T : поведение $R_{AA}(\phi) \sim R_{AA}(K);$

•Различие отношений R_{AA} в области промежуточных $p_T(>50\%)$:

 $^{(3)}$ невозможно полностью объяснить различием в величинах избытка частиц (эффектом Кронина) в d+Au взаимодействиях (~25%);

 \mathfrak{S} преимущественно определяется не массой адрона, а числом (р и ϕ) и ароматом (ϕ и π°) кварков, из которых он состоит.

A+*A* взаимодействия при $\sqrt{s_{NV}}$ = 62.4 ГэВ: R_{AA}

Au+Au

• В центральных Cu+Cu и Au+Au взаимодействиях в области промежуточных p_{T} :

 $\mathfrak{S} R_{AA}(\pi^{o}) < R_{AA}(\phi) < R_{AA}(p) \rightarrow$ аналогично ядро-ядерным взаимодействиям при $\sqrt{s_{_{\rm NV}}}$ =200 ГэВ;

 \odot Неопределенности измерений >> $\sqrt{s_{_{NV}}}$ =200 ГэВ.

Си+Си и Аи+Аи взаимодействия

 \odot в доступном диапазоне поперечных импульсов p_T , степень подавления выхода ϕ -мезонов не зависит от особенностей геометрии перекрытия ядер.

Рекомбинационные процессы

• Во взаимодействиях тяжёлых ионов в области промежуточных поперечных импульсов наблюдается различие в степенях подавления лёгких π^{o} -мезонов, массивных ϕ -мезонов и протонов:

 ✓ не объясняется эффектом Кронина и зависит от числа и аромата кварков, входящих в состав родившейся частицы.

• Различие в степени подавления барионов и мезонов в области промежуточных p_T объясняется большей прибавкой к поперечному импульсу для барионов, которую они получают в результате рекомбинации 3 кварков.

• Различие в степени подавления π° и ϕ мезонов объясняется тем, что рекомбинация тепловых партонов преобладает для ϕ -мезонов в большей области поперечных импульсов, чем для π° -мезонов;

• Источником тепловых партонов является кварк-глюонная плазма.

Заключение

- ▶ В работе были измерены инвариантные спектры рождения по поперечному импульсу и факторы ядерной модификации φ-мезонов в p+p, d+Au, Cu+Cu и Au+Au взаимодействиях при энергиях √s_№ = 62.4 и 200 ГэВ;
- ▶ В Au+Au (Cu+Cu) взаимодействиях при энергии $\sqrt{s_{N}}$ = 200 ГэВ:
 - $\checkmark \quad p_{_{\mathrm{T}}} > 5.0 \ \Gamma \ni B/c; \ R_{_{\mathrm{A}}}(\phi) \approx R_{_{\mathrm{A}}}(\pi^{_{\mathrm{O}}}); \ 2.0 < p_{_{\mathrm{T}}}(\Gamma \ni B/c) < 5.0; \ R_{_{\mathrm{A}}}(\pi^{_{\mathrm{O}}}) < R_{_{\mathrm{A}}}(\phi) < R_{_{\mathrm{A}}}(\phi);$
- ► В случае равного $\langle N_{y_{H}} \rangle$, $R_{AA}^{AA_{1}}$ (ϕ) $\approx R_{AA}^{GG_{1}}$ (ϕ):
 - ✓ в среднем по азимутальному углу, степень подавления выхода φ-мезонов не зависит от особенностей геометрии перекрытия ядер;
- ▶ В d+Au взаимодействиях при энергии $\sqrt{s_N} = 200 \ \Gamma \ni B$: $R_A(\phi) \approx R_A(\pi^0) < R_A(p)$:
 - Разница в R_A между φ и π^o, а также между φ, π^o и р в Au+Au (Cu+Cu) не может быть объяснена эффектом Кронина;
 - ✓ Качественно эффект объясняется при привлечении рекомбинации (КГП);
- ▶ В Au+Au (Cu+Cu) взаимодействиях при энергии $\sqrt{s_{NN}}$ = 62.4 ГэВ:
 - ✓ 2.0 < $p_T (\Gamma \ni B/c)$ < 5.0: $R_A(\pi^0)$ < $R_A(\phi)$ < $R_A(p)$;
 - ✓ Образование КГП возможно и при энергии $√s_{N}$ = 62.4 ГэВ.

Публикации

- Публикации:
 - Котов, Д.О. Рождение φ-мезонов в столкновениях ядер меди при энергии 200 ГэВ [Текст] / Д.О. Котов, Я.А. Бердников, В.Г. Рябов [и др.] // Научно-технические ведомости СПБГПУ. – 2009 – №4(88). – С. 57–62.
 - Котов, Д.О. Рождение φ-мезонов в столкновениях релятивистских протонов, ядер меди и ядер золота при энергии 62,4 ГэВ [Текст] / Д.О. Котов, Я.А. Бердников, В.Г. Рябов [и др.] // Научно-технические ведомости СПБГПУ. – 2010. – №1(94). – С. 103–109.
 - 3. Котов, Д.О. Рождение φ-мезонов в столкновениях ядер дейтерия и ядер золота при энергии 200 ГэВ [Текст] / Д.О. Котов, Я.А. Бердников, В.Г. Рябов [и др.] // Научнотехнические ведомости СПБГПУ. – 2010. – №2(98). – С. 135–140.
 - 4. К публикации в Phys. Rev. C принята коллаборационная работа: "Nuclear modification factors of φ -mesons in d+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{_{NN}}}$ =200 GeV", http://arxiv.org/abs/1004.3532
- 1. Конференции:
 - ✓ Научная сессия-конференция секции ЯФ ОФН РАН «Физика фундаментальных взаимодействий» (Москва, Россия, 2009 г.);
 - ✓ VII конференция по физике высоких энергий, ядерной физике и ускорителям (Харьков, Украина, 2010 г.);
 - ✓ LX Международная конференция «Ядро 2010» (С.-Петербург, 2010 г.).
 - ✓ XIV Всероссийская конференция «Фундаментальные исследования и инновации в национальных исследовательских университетах» (С.-Петербург, 2010 г.)
 - ✓ RHIC & AGS Users meeting, Brookhaven National Laboratory, (Upton, NY, 2010 г.)

Backups

Информация о Монте-Карло задачах

Основным инструментом для проведения моделирований работы экспериментальной установки методом Монте-Карло является программа PISA:

• в точности повторяет экспериментальный комплекс;

• моделирования прохождения частиц и продуктов их распада через установку;

• моделирование откликов детекторов.

Анализ		тий	Диапазон				
		Число собы	Быстрота, у	Азимут, радиан	Z _{Bepur} , CM	Поперечный импульс, <i>p</i> _T , ГэВ/с	Ширина φ-мезона, МэВ
	<i>p</i> + <i>p</i>	$2 \cdot 10^{6}$				0.5 - 8.0	0
		20.10^{6}	=0.5	- 2π	±30	0.5 - 5.5	PDG
62.4 ГэВ	Cu+Cu	$2 \cdot 10^{6}$				0.5 - 8.0	0
		20.10^{6}				0.5 - 5.5	PDG
	Au+Au	$2 \cdot 10^{6}$				0.5 - 8.0	0
		20.10^{6}				0.5 - 5.5	PDG
200 ГэВ Cu+Cu	d+ A u	2.10^{6} +		0		0.5 - 8.0	0
	<i>a</i> +Au	$7 \cdot 10^{6}$				0.5 - 11.0	PDG
	B Cu+Cu	$2 \cdot 10^{6}$				0.5 - 8.0	0
		$7 \cdot 10^{6}$			-	0.5 - 11.0	PDG
		20.10^{6}				0.5 - 5.5	PDG

 $1/N_{trigger} dN/d(\Delta \phi)$ -flow

0.2

0.1

-0.1

Жёсткие процессы:

Сопоставимый вклад в 1. рождение барионов и мезонов в пике прямой и обратной струи.

Радиальный поток:

- Система расширяется в 1. вакууме → радиальный коллективный поток;
 - Попытка объяснить 2. зависимость выхода частиц от их массы.

Рекомбинация:

Справляется с описанием p/π и 1. разницы между лёгкими и тяжёлыми мезонами; Не описывает струеподобные 2. корреляции и одинаковый выход в пиках прямой и обратной струи.

Инвариантные спектры рождения по поперечному импульсу ф-мезонов

Функция Леви (Wilk, Wlodarczyk arXiv:nucl-th/9908459)

$$\frac{1}{2\pi p_T}\frac{d^2N}{dp_Tdy} = \frac{1}{2\pi}\frac{dN}{dy}\frac{(n-1)(n-2)}{\left(\Lambda + m_{\phi}(n-1)\right)\left(\Lambda + m_{\phi}\right)}\left(\frac{\Lambda + \sqrt{p_T^2 + m_{\phi}^2}}{\Lambda + m_{\phi}}\right)^{-1}$$

 m_{ϕ} – масса ϕ -мезона. свободные $\frac{dN}{dv}$, *n* и Λ

Функция Леви позволяет описать спектры рождения ф-BO всем мезонов диапазоне измерений ПО p_{T} BO всех представленных системах при различной центральности столкновений (синие линии);

• В области $p_T > 5$ ГэВ/с, где превалируют жёсткие процессы, поведение инвариантных спектров рождения не описывается экспоненциальной функцией (красный пунктир).

Анализ качества данных, сравнение аксептансов

STAR

0.4

preliminary

06

08

 $z_T = p_T(assoc) / p_T(trig)$

- materializes as a jet of particles.
- A medium might be expected to modify D(z).
- When the full jet is difficult to identify, z is replaced by z_T referencing the leading or "trigger" particle of the jet.

rton Distribution

- Parton Distribution
 Functions are well
 measured and
 universal (at least
 under the factorization
 theorem).
- Calculations (PYTHIA) use theoretical form guided by the data:
 - CTEQ 5M
 - others...
- Parton distributions in nuclei are modified as compared to nucleons.

Collins, Soper, Sterman, Nucl. Phys. B263 (1986) 37

$$d\sigma^{NN \to h+X} = \sum_{fijk} f_{i/N}(x_1, Q^2) \otimes f_{j/N}(x_2, Q^2) \otimes \hat{\sigma}_{ij \to f+k} \otimes D_{f \to h}^{vac}(z, \mu_f^2)$$

Классы центральности

