# Лазерно-спектроскопические исследования изотопов таллия.

А. Е. Барзах, Ю. М. Волков, В. С. Иванов, К. А. Мезилев, П. Л. Молканов, Ф. В. Мороз, С. Ю. Орлов, В. Н. Пантелеев, Д. В. Федоров

- 1. Общий обзор результатов по исследованию изотопов таллия.
- 2. Экспериментальная установка.
- 3. Что такое «аномалия сверхтонкой структуры» и новый метод ее измерения.
- 4. Экспериментальные результаты: НFA для изомеров таллия с /=9/2. Какую информацию о ядре можно получить из данных по HFA?



Fig. 1. Energy-level diagram of TI I with the investigated transitions

### **Before our experiments:**

| <sup>183</sup> TI, I=1/2, | <sup>184</sup> TI, I=7, | <sup>185</sup> TI, I=1/2,                            | <sup>186</sup> TI, I=7,                             | <sup>187</sup> <b>TI,</b> I=1/2,                             | <sup>188</sup> TI, I=7,                             |
|---------------------------|-------------------------|------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|
| T <sub>1/2</sub> =6.9 s   | T <sub>1/2</sub> =11 s  | T <sub>1/2</sub> =19.5 s                             | T <sub>1/2</sub> =27.5 s                            | T <sub>1/2</sub> =51 s                                       | T <sub>1/2</sub> =71 s                              |
| ?                         | ?                       | <sup>185</sup> TI, I=9/2,<br>T <sub>1/2</sub> =1.8 s | <sup>186</sup> TI, I=10,<br>T <sub>1/2</sub> =2.9 s | <sup>187</sup> <b>TI,</b> I=9/2,<br>T <sub>1/2</sub> =15.6 s | <sup>188</sup> TI, I=9,<br>T <sub>1/2</sub> =0.04 s |

| <sup>189</sup> TI, I=1/2,         | <sup>190</sup> TI, I=7,         | <sup>191</sup> <b>TI, I=1/2</b> , | <sup>192</sup> <b>TI, I=7</b> , | <sup>193</sup> <b>TI, I=</b> 1/2, | <sup>194</sup> <b>TI,</b> I=7,  |
|-----------------------------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------|---------------------------------|
| T <sub>1/2</sub> =2.6 m           | T <sub>1/2</sub> =3.7 m         | T <sub>1/2</sub> =2.2 m           | T <sub>1/2</sub> =10.8 m        | T <sub>1/2</sub> =21.6 m          | T <sub>1/2</sub> =32.8 m        |
| <sup>189</sup> <b>TI, I=</b> 9/2, | <sup>190</sup> <b>TI, I=</b> 2, | <sup>191</sup> <b>TI, I=</b> 9/2, | <sup>192</sup> <b>TI</b> , I=2, | <sup>193</sup> <b>TI, I=9</b> /2, | <sup>194</sup> <b>TI</b> , I=2, |
| T <sub>1/2</sub> =84 s            | T <sub>1/2</sub> =2.6 m         | T <sub>1/2</sub> =5.2 m           | T <sub>1/2</sub> =9.6 m         | T <sub>1/2</sub> =2.1 m           | T <sub>1/2</sub> =33 m          |



| <sup>183</sup> <b>TI</b> , I=1/2,<br>T <sub>1/2</sub> =6.9 s       | <sup>184</sup> TI, I=7,<br>T <sub>1/2</sub> =11 s                | <sup>185</sup> <b>TI</b> , I=1/2,<br>T <sub>1/2</sub> =19.5 s | <sup>186</sup> TI, I=7,<br>T <sub>1/2</sub> =27.5 s         | <sup>187</sup> <b>TI,</b> I=1/2,<br>T <sub>1/2</sub> =51 s         | <sup>188</sup> TI, I=7,<br>T <sub>1/2</sub> =71 s   |
|--------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|
| ?                                                                  | ?                                                                | <sup>185</sup> <b>TI, I=</b> 9/2,<br>T <sub>1/2</sub> =1.8 s  | <sup>186</sup> <b>TI</b> , I=10,<br>T <sub>1/2</sub> =2.9 s | <sup>187</sup> TI, I=9/2,<br>T <sub>1/2</sub> =15.6 s              | <sup>188</sup> TI, I=9,<br>T <sub>1/2</sub> =0.04 s |
|                                                                    |                                                                  |                                                               |                                                             |                                                                    |                                                     |
| <sup>189</sup> TI, I=1/2,<br>T <sub>1/2</sub> =2.6 m               | <sup>190</sup> TI, I=7,<br>T <sub>1/2</sub> =3.7 m               | <sup>191</sup> TI, I=1/2,<br>T <sub>1/2</sub> =2.2 m          | <sup>192</sup> <b>TI, I=</b> 7,<br>T <sub>1/2</sub> =10.8 m | <sup>193</sup> TI, I <del>≠</del> 1/2,<br>T <sub>112</sub> =21.6 m | <sup>194</sup> TI, I=7,<br>T <sub>1/2</sub> =32.8 m |
| <sup>189</sup> TI, I=9/2,<br>T <sub>1/2</sub> =84 s                | <sup>190</sup> 7 <sup>-</sup> I, I=2,<br>T <sub>1/2</sub> =2.6 m | <sup>191</sup> TI, I=9/2,<br>T <sub>1/2</sub> =5.2 m          | <sup>192</sup> TI, I=2.<br>T <sub>1/2</sub> =9.6 m          | <sup>193</sup> TI, I=9/2,<br>T <sub>1/2</sub> =2.1 m               | <sup>194</sup> TI, I=2,<br>T <sub>1/2</sub> =33 m   |
|                                                                    |                                                                  |                                                               |                                                             |                                                                    |                                                     |
| <sup>195</sup> TI, I=1, rep                                        | eated for and $2^{2}$                                            | other atomic t                                                | transition                                                  | <sup>199</sup> TI, I=1/2,                                          | <sup>200</sup> TI, I=2,                             |
| $T_{1/2}$ =1.16 ľ                                                  | $P_{1/2} \rightarrow 6d D_{1/2}$                                 | <sup>3/2</sup> (276.9 nm)                                     |                                                             | T <sub>1/2</sub> =7.42 h                                           | T <sub>1/2</sub> =26.1 h                            |
| <sup>195</sup> TI. 1 <del>7</del> 9 for                            | King-plot całi                                                   | bration                                                       |                                                             | <sup>199</sup> TL 1=9/2.                                           |                                                     |
| T <sub>1/2</sub> =3,6 s                                            | T <sub>1/2</sub> =1.84 h                                         | T <sub>1/2</sub> =0.54 s                                      | T <sub>1/2</sub> =5.3 h                                     | T <sub>1/2</sub> =0.028 s                                          |                                                     |
|                                                                    |                                                                  |                                                               |                                                             |                                                                    |                                                     |
| neasured for t                                                     |                                                                  | <sup>203</sup> Tl, I=1/2,                                     |                                                             | <sup>207</sup> TI, I=1/2,                                          |                                                     |
| T <sub>1/2</sub> =72.9 h                                           | T <sub>1/2</sub> =12.23 d                                        | stable                                                        | • • •                                                       | T <sub>1/2</sub> =4.77 m                                           |                                                     |
| <sup>201</sup> <i>TI, I=9/2,</i><br><i>T<sub>1/2</sub>=0.002 s</i> |                                                                  |                                                               |                                                             |                                                                    |                                                     |

| <sup>179</sup> <b>TI</b> , I=1/2,                                | <sup>180</sup> TI, I=(4,5), | <sup>181</sup> <b>TI</b> , I=1/2,                                | <sup>182</sup> <b>TI</b> , I=(4,5), | <sup>183</sup> <b>TI, I=1</b> /2,                               | <sup>184</sup> <b>TI, I=</b> 7,                  |
|------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|
| T <sub>1/2</sub> = 0.23 s                                        | T <sub>1/2</sub> =1.1 s     | T <sub>1/2</sub> =3.4 s                                          | T <sub>1/2</sub> =3.1 s             | T <sub>1/2</sub> =6.9 s                                         | T <sub>1/2</sub> =11 s                           |
| <sup>179</sup> <b>TI, I=</b> 9/2,<br>T <sub>1/2</sub> = 0.0015 s |                             | <sup>181</sup> <b>TI</b> , I=9/2,<br>T <sub>1/2</sub> = 0.0014 s |                                     | <sup>183</sup> <b>TI</b> , I=9/2,<br>T <sub>1/2</sub> = 0.053 s | <sup>184</sup> TI, I>8,<br>T <sub>1/2</sub> <1 s |

| <sup>185</sup> <b>TI, I=1/2</b> ,<br>T <sub>1/2</sub> =19.5 s |                                  |
|---------------------------------------------------------------|----------------------------------|
| <sup>185</sup> TI, I=9/2,                                     | <sup>186</sup> <b>TI</b> , I=10, |
| T <sub>1/2</sub> =1.8 s                                       | T <sub>1/2</sub> = 2.9 s         |

| - | - |
|---|---|
|   |   |

| IRIS | ) |
|------|---|
|      |   |

**IRIS & ISOLDE** 

ISOLDE



unknown





## Laser Ion Source (LIS)







$$\Delta v = a \Psi - 2$$

$$a \propto \frac{\mu}{I}$$

$$\frac{\mu}{I} = const$$

$$I_A \Psi a_A = N const$$

$$I_A \Psi a_A = \mu_{205} \Psi \frac{I_A}{I} \Psi \frac{a_A}{a_{205}}$$

$$\mu_A = \mu_{205} \Psi \frac{I_A}{I} \Psi \frac{a_A}{a_{205}}$$

$$HFA: \qquad \mu_2$$

 $\mu_1$ 

L

 $a_2 \Psi I_2$ 

$$v = a \, \mathsf{H} \frac{2I+1}{2}$$

.

Ι

μ

$${}^{A_{1}}\Delta {}^{A_{2}} = \frac{a_{1}}{\mu_{1}} \underbrace{\Psi_{2}}{\mu_{2}} - 1 \qquad \mu_{A} = \mu_{205} \underbrace{\Psi_{A}}{I_{205}} \underbrace{\Psi$$

Г

$$\varepsilon : \langle r^2 \rangle_m$$



$$\rho_{n_1l_1,n_2l_2}^A = \frac{a_{n_1l_1}^A}{a_{n_2l_2}^A},$$

Ratio  $\rho_{l_1,l_2}^A$  can have a different value for different isotopes because the atomic states with different *n*, *l* 

have different sensitivity to the nuclear magnetization distribution.

Our case: we have studied state with  $p_{1/2}$  valence electron; previously state with  $s_{1/2}$  valence electron has been studied

Ratio of the electron density at the nucleus for  $p_{1/2}$  state and  $s_{1/2}$  state: ;  $(\alpha Z)^2 = 0.34$ for Z=81, so one can expect:

$${}^{n_1l_1}_{A_1} \Delta_{A_2}^{n_2l_2} = \frac{\rho {}^{A_1}_{n_1l_1, n_2l_2}}{\rho {}^{A_2}_{n_1l_1, n_2l_2}} - 1 = {}^{A_1} \Delta_{A_2}^{A_2} (n_1l_1) - {}^{A_1} \Delta_{A_2}^{A_2} (n_2l_2)$$

$${}^{205} \Delta_{6P_{1/2}}^{203} = 1.050(15) \cdot 10^{-4}$$

$${}^{205} \Delta_{7S_{1/2}}^{203} = 3.4(15) \, \text{Ul} \, 0^{-4}$$

$${}^{A_1} \Delta_{A_2}^{A_2} (s_{1/2}) ; \ 0.3$$

$$\begin{array}{c} \mu_{nl} \in \mu_{205} \underbrace{\Psi_{A}^{I}}_{I_{205}} \underbrace{\Psi_{A}^{(nl)}}_{I_{205}} & \longrightarrow \\ \mu_{A} = \mu_{nl} \underbrace{\Psi(1 + {}^{205} \Delta_{nl}^{A})}_{nl} \\ \end{array} \\ \begin{array}{c} \mu_{7S_{1/2}}(A) = \mu_{6P_{1/2}}(A) \underbrace{\Psi(1 + {}^{6P_{1/2}}_{205} \Delta_{nl}^{7S_{1/2}})}_{I} \\ \end{array} \\ \begin{array}{c} \mu_{7S_{1/2}}(A) = \mu_{6P_{1/2}}(A) \underbrace{\Psi(1 + {}^{6P_{1/2}}_{205} \Delta_{nl}^{7S_{1/2}})}_{I} \\ \end{array} \\ \begin{array}{c} \mu_{6P_{1/2}} \Delta_{nl}^{7S_{1/2}} \\ 187 & 0.5(2.6) \times 10^{2} \\ 189 & 1.5(1.1) \times 10^{2} \\ 189 & 1.5(1.1) \times 10^{2} \\ 193 & 1.36(66) \times 10^{2} \\ \end{array} \\ \begin{array}{c} \mu_{6P_{1/2}} \Delta_{nl}^{7S_{1/2}} \\ 191 & 1.67(93) \times 10^{2} \\ 193 & 1.36(66) \times 10^{2} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mu_{6P_{1/2}} \Delta_{nl}^{7S_{1/2}} \\ 189 & 1.5(1.1) \times 10^{2} \\ 193 & 1.36(66) \times 10^{2} \\ \end{array} \\ \begin{array}{c} \mu_{6P_{1/2}} \Delta_{nl}^{7S_{1/2}} \\ 191 & 1.67(93) \times 10^{2} \\ 193 & 1.36(66) \times 10^{2} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mu_{6P_{1/2}} \Delta_{nl}^{7S_{1/2}} \\ 191 & 1.67(93) \times 10^{2} \\ 193 & 1.36(66) \times 10^{2} \\ \end{array} \\ \begin{array}{c} \mu_{6P_{1/2}} \Delta_{nl}^{7S_{1/2}} \\ 193 & 1.36(66) \times 10^{2} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mu_{6P_{1/2}} \Delta_{nl}^{7S_{1/2}} \\ 193 & 1.36(66) \times 10^{2} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mu_{6P_{1/2}} \Delta_{nl}^{7S_{1/2}} \\ 193 & 1.36(66) \times 10^{2} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mu_{6P_{1/2}} \Delta_{nl}^{7S_{1/2}} \\ 193 & 1.36(66) \times 10^{2} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mu_{6P_{1/2}} \Delta_{nl}^{7S_{1/2}} \\ 193 & 1.36(66) \times 10^{2} \\ \end{array} \\ \end{array}$$

## Magnetic moments for TI isomers with I=9/2



#### DHFA calculation Atomic part: atomic many-body technique (relativistic "coupled-cluster" approach) by A.-M. Mårtensson-Pendrill

$$\varepsilon = b_{2s} \Psi_m \Psi_{d_2}, \quad \lambda_m = \langle r^2 \rangle_m \Psi_{\mathfrak{g}}^{\mathbb{X}} 1 + \frac{b_{4s} \Psi_{d_4}}{b_{2s} \Psi_{d_2}} \Psi_{\langle r^2 \rangle}^{\langle r^4 \rangle} + \dots \Psi_{\mathfrak{g}}^{\mathcal{g}} = k_m \Psi_{\langle r^2 \rangle_m}$$
Single shell-model configuration:  
(in our case: pure  $h_{\mathfrak{g}/\mathfrak{g}}$  intruder state)
$$d_{2n} = C_s \Psi_{\mathfrak{g}}^{\mathbb{X}} 1 + \frac{2n}{2n+3} \Psi_{\zeta} \Psi_{\mathfrak{g}}^{\mathbb{H}} + \frac{3}{2n+3} \Psi(1 - C_s).$$

$$\zeta = \frac{2I+3}{4I} \qquad C_s = \frac{g_s}{g_I} \cdot \frac{g_I - g_L}{g_s - g_L}$$

 ${}^{6P_{1/2}}_{205}\Delta {}^{7S_{1/2}}_{A(I=9/2)}(theor) = 1.2 \cdot 10^{-2} \quad {}^{6P_{1/2}}_{205}\Delta {}^{7S_{1/2}}_{A(I=9/2)}(exp) = 1.45(48) \, \text{\ensuremath{\P}10^{-2}}$ 

$$\frac{A_{1}\Delta A_{2}(p_{1/2})}{A_{1}\Delta A_{2}(s_{1/2})}(theor) = 0.31 \quad (cf.:(\alpha Z)^{2} = 0.34)$$

$$\frac{205\Delta A_{01/2}^{203}}{6P_{1/2}} = 1.050(15) \cdot 10^{-4}$$

| Magneti | ic moments for TI i                |                                                                                                                                                                |                                                         |
|---------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Α       | $\mu (\mu_N)$<br>(literature data) | $ \begin{array}{c} \mu \left( \mu_{N} \right) \\ \text{with the}_{A} = \sqrt{205}  \Psi \frac{I_{A}}{I_{205}} \\ \text{HFA} \\ \text{correction} \end{array} $ | $-\frac{q}{a_{A}(nl)} = 4(1 + \frac{205}{a_{205}(nl)})$ |
| 185     |                                    | 3.849(90)                                                                                                                                                      |                                                         |
| 187     | 3.7932(65)                         | 3.712(27)                                                                                                                                                      |                                                         |
| 189     | 3.8776(63)                         | 3.760(28)                                                                                                                                                      |                                                         |
| 191     | 3.9034(48)                         | 3.785(28)                                                                                                                                                      |                                                         |
| 193     | 3.9482(39)                         | 3.829(28)                                                                                                                                                      |                                                         |
| 195     |                                    | 3.898(38)                                                                                                                                                      |                                                         |
| 197     |                                    | 4.047(69)                                                                                                                                                      |                                                         |
|         |                                    |                                                                                                                                                                |                                                         |





- 1. Продемонстрирована работоспособность и эффективность новой лазерной установки на масс-сепараторе ИРИС.
- 2. Впервые измерена аномалия сверхтонкой структуры для изомеров таллия с *I*=9/2, что позволило, в частности, уточнить значения ранее измеренных магнитных моментов.
- Показано, что современные атомные расчеты удовлетворительно описывают «электронные» факторы, необходимые для вычисления HFA.
- 4. Измерение DHFA в сочетании с современными атомными расчетами открывает возможность исследования распределения намагниченности для короткоживущих удаленных ядер.

