

Anton A. Izotov, Gatchina 26.03.13

PANDA Forward TOF Walls.

Done in Last Years:

- PMT test stand prototyping,
- PANDA prototype test @ PNPI-2009,
- Startless TOF reconstruction algorithm,
- SiPM test stand prototyping,
- SiPM radiation hardness test,
- SiPM's @ OLYMPUS,
- PANDA prototype MC simulation,
- PANDA prototype test @ PNPI-2012,
- PANDA prototype test @ COSY-2012.

Prototyping @ PNPI 2009 (Preprint PNPI 2833).

PMT R4998 & SiPM S10931-50p at the Test Stand.

SiPM NxN matrixes!

*R*4998

Run	σ_0	σ1	σ2
40366	326	168	149
40367	497	170	142
40368	486	176	147

S10931-50p

Run	σ_0	σ1	σ2
40366	608	195	157
40367	543	199	151
40368	557	193	150

B408 – 3x3x40 mm³ TDC – 25 ps/chan PA - ~8 times Source - ⁹⁰Sr

σ worse than 160 ns

SiPM Radiation Hardness Test @ 1GeV PNPI Proton Beam.

- The absolute beam intensity was determined in a standard way by measuring induced radioactivity of irradiated aluminum foils.
- The beam intensity during the tests was varied in the range 1.3 2.1x10⁸ cm⁻²s⁻¹.
- The SiPM sample was not powered!
- Radiation was exposed in 10 successive periods about 10 minutes each. The integrated number of protons passing through the sensitive surface of the SiPM sample with the cross-section of 3x3 mm² was 0.9*10¹¹. By our estimations, such dose corresponds approximately to irradiation to be collected by a similar SiPM installed on a central scintillation bar of the Forward wall during 10 years of continuous beam producing hadrons off the PANDA target.
- SiPM parameters (dark noise, amplitude and time characteristics for different values of high voltage) were measured before and after the radiation test using test station with ⁹⁰Sr electron source.

U,V	Ι, μΑ	A, mV	Noise	Noise+ ⁹⁰ Sr
72.06	0.15	40	1550	8700
72.53	0.30	80	4230	18500
72.06	81.0	4	2800	6200
72.53	113.0	6	99000	102000

As it is seen from the table the SiPM was practically killed by this dose the value of which can be taken as upper limit,

- Yet it is important to find out at which dose the sample start malfunctioning,
- It is also important to compare irradiation effect on unpowered and powered samples,
- All this will constitute our nearest experimental program with SiPM samples.

$\Delta T = 0.056 C^{\circ}$ this is not heat!

SiPM's @ OLYMPUS. DESY TB22.

- Both side-mounting and corner-mounting, counters have similar yields,
- •Blind spots exist in both configurations,
- •Side-mounting is easier,
- Trigger scan shows, that even one SiPM is enough with proper threshold

Counters:8mm/2SiPM's, 4mm/2SiPM's (corners), 4mm/2SiPM's (sides), Readout: 25x preamp (electronics workshop, KPH Mainz)

- •QDC spectra to see light yield,
- \bullet QDC spectra with prescaled baseline triger mixed into determine gain for each spectrum,
- Triple coincidence from beam trigger finger conciliators (2 with PMT's, 1 with SiPM)
- Quadruple coincidence (3 PMT's, 1 SiPM and single SiPM
 - •efficiency scan,

• maximum efficiency reachable with single SiPM

Prototype MC Simulation.

- Simulation of optical processes in GEANT4.
- MC studies. Time distributions.
- First estimations for time resolution.

Scintillator BC 408

with light guides for 2" PMT (46 mm diameter)

Hamamatsu R2083, R4998 TOF Side 14 plates 100*10*2.5 cm³ SiPM

panda

46 plates 140*10*2.5 cm³

20 plates 140* 5*2.5 cm³

TOF WALL

BICRON 408

PMT:

panda

Photon Yield Time Distributions.

MC Time Resolutions.

PNPI-2012 Prototyping.

5 Ilo cm Wide Slab Resolutions.

 σ_{12} =63 ps

Prototyping @ COSY.

- Beam: protons E=2GeV, d=3cm,
- Collimator 0.2x3 cm,
- Counter: B408, 140x5x1.5 cm³, R4998X2,
- Two counters: B408, 1x1x1 cm³, PMT-187,
- Flash QDC 24 ps/ch

(Marek Palka, Jagellonian University, Krakow),

 $\sigma_{\mathcal{PMT}-187} \leq 70 \ ps$

Readout and Preliminary Results.

Real PANDA readout prototype,
2009 results confirmed – 1.5cm is not enough,
2PMT187 difference resolution better 100 ps, or ~70ps per PMT

QDC

A.A.Izotov, Gatchina, 26.03.13

V S1

Ƴ S2

アS3 アS4 nx40mV

4ФК

Plans:

- SiPM NxN matrixes?
- MC development (prototypes, physics),
- Side TOF Wall prototype (to be done and tested),
- TDR.

Yet another approach to the ToF-based PID at

