

ФУНДАМЕНТАЛЬНАЯ ХАРАКТЕРИСТИКА ТРАКТА УСИЛЕНИЯ СИГНАЛОВ И ЕЕ ПРИМЕНЕНИЕ

Семинар ОФВЭ 8 февраля 2011

1

"Trom chaos to order"

Речь пойдет о реконструкции шумовых распределений, о разработанной мною методике, основанной на теории Райса, в приложении к задачам физического эксперимента

$$\begin{array}{l} \begin{array}{c} Mathematical \\ analysis of \\ analysis of \\ random noise \end{array} \\ -\int_{t_1}^{t_2} dt \frac{M_{11}^{-1/2}}{2\pi} \int_{-\infty}^{0} \zeta \exp\left[-\frac{\zeta^{2}}{2|M|} \left(M_{12} - \frac{M_{13}^{2}}{M_{11}}\right)\right] d\zeta \\ = (t_2 - t_1) \frac{\psi_{0}^{(0)}}{2\pi} M_{11}^{-1/2} = \frac{t_2 - t_1}{2\pi} \left[\frac{\psi_{0}^{(0)}}{-\psi_{0}^{\prime\prime}}\right]^{1/2} \end{array}$$

Hence the expected number of maxima per second is

$$\frac{1}{2\pi} \left[\frac{\psi_0^{(4)}}{-\psi_0^n} \right]^{1/2} = \left[\frac{\int_0^{\infty} f^4 w(f) \, df}{\int_0^{\infty} f^4 w(f) \, df} \right]^{1/2}$$
(3.6)

(3.6-6)

ИЗ ТЕОРИИ РАЙСА

Шумовой ток

Амплитудное распределение

$$I_n(t) = \sum_{n=1}^{N} a_n \cos(\omega_n t) + b_n \sin(\omega_n t)$$

Амплитуды и фазы – случайные
величины

$$\frac{dI}{\sqrt{2\pi R(0)}} \exp\left(-\frac{I^2}{2R(0)}\right)$$

Распределение Гаусса

Автокорреляционная фунция и её производные

$$R(\tau) = \int_{0}^{\infty} S_{n}(f) \cos(2\pi f \tau) df$$

$$R(0) = \int_{0}^{\infty} S_{n}(f) df$$

$$H(0) = \int_{0}^{\infty} S_{n}(f) df$$

$$R(0) = -4\pi^{2} \int_{0}^{\infty} f^{2} S_{n}(f) \cos(2\pi f \tau) df$$

$$R''(0) = -4\pi^{2} \int_{0}^{\infty} f^{2} S_{n}(f) df$$

МАКСИМУМЫ И НУЛИ СЛУЧАЙНОЙ ФУНКЦИИ

ФОРМУЛЫ РАИСА (1936Г.)

Получены эвристически,

с привлечением гармонического анализа к случайным процессам

без строгого математического док-ва $E(zero) = \frac{T}{\pi} \sqrt{-\frac{R''(0)}{R(0)}} = 2T$ $\int_{-\infty}^{\infty} S(f)$ $=\frac{T}{2\pi}\sqrt{-\frac{R^{(4)}(0)}{R^{''}(0)}}$ $E(\max)$ $\int_{1}^{\infty} \mathcal{L}^{2} \mathcal{L}$ $n \setminus J$

А.П.Кащук

СТРОГОЕ МАТЕМАТИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО выполнено советскими математиками (1960-1961 Г.Г.)

I.A.Ivanov.

On the average number of crossing of a level by the sample functions of a stochastic process.

Teor. Veroyatnost. i Primen. vol. 5 (1960), pp. 319-323.

E.V.Bulinskava.

On the mean number of crossing of a level by a stationary Gaussian process.

Teor. Veroyatnost. i Primen. vol. 6 (1961), pp. 435-438.

2. Zeros and expectations. If f is a continuous function on the unit interval. we say f has a crossing zero at $t_0 \varepsilon (0, 1)$ provided every neighborhood of t_0 contains points t_1 and t_2 with $f(t_1)f(t_2) < 0$; we say f has a tangential zero at $t_0 \in (0, 1)$ provided $f(t_0) = 0$ and there is a neighborhood of t_0 on which f has a constant sign. Let C(T) be the number of crossing (tangential) zeros of f in (0, 1) so that the number of zeros of f in (0, 1) is C + T.

For the process $X(\cdot)$ we show T = 0 a.s., this is accomplished by referring tangencies to the continuity of the variables $\sup_{(a,b)} X(\cdot)$. If $\{t_i\}$ is a countable dense set in (0, 1) and if $\{\epsilon_n\}$ is a sequence of positive numbers with limit 0, we note that

 $\{x(\cdot) \mid x(\cdot) \text{ has a tangential zero from below in } (0, 1)\}$

$$\subset \mathsf{U}_{j,n} \{ x(\cdot) \mid \sup_{(t_j-\epsilon_n, t_j+\epsilon_n)} x(\cdot) = 0 \}.$$

LEMMA 1. $\sup_{(a,b)} X(\cdot)$ has a continuous distribution for any interval $(a, b) \subset$ (0, 1).

PROOF. If $\{T_n\}$ is an increasing sequence of finite sets in (a, b) with $\bigcup_n T_n$ dense in (a, b), $\max_{T_n} X(\cdot) \to_{a.s.} \sup_{(a,b)} X(\cdot)$. Now $\max_{T_n} X(\cdot)$ has a density of the form $\phi \cdot G_n$ where ϕ is the standard normal density and where $G_n(u)$ is a sum of terms of the form $P[X_1 \leq u, \dots, X_k \leq u \mid X_0 = u]$. These conditional probabilities are in fact nondecreasing in u. To see this, suppose (X_0, X_1, \dots, X_k) is multivariate normal with $EX_i = 0$, $EX_i^2 = 1$, $i = 0, 1, \dots, k$. For convenience, suppose X_0, X_1, \dots, X_r is a maximal linearly independent subset and that $X_i = \sum_{j=0}^r \theta_{ij} X_j, i = r + 1, \cdots, k$. If $EX_i X_j = \sigma_{ij}$ for $i, j = 0, 1, \cdots, r$, the conditional distribution of (X_1, \dots, X_r) given $X_0 = u$ is multivariate normal with mean $(\sigma_{01}u, \cdots, \sigma_{0r}u)$ and covariance matrix of (i, j)th entry $\sigma_{ij} - \sigma_{0i}\sigma_{0j}$. Now $P[X_1 \leq u, \dots, X_k \leq u \mid X_0 = u]$ is an integral of the corresponding density over the set

$$[x_1 \leq u, \cdots, x_r \leq u, \sum_{j=1}^r \theta_{ij} x_j \leq u(1 - \theta_{i0}), i = r + 1, \cdots, k].$$

Centering the density by letting $y_i = x_i - \sigma_{0i}u$, it is an integral of a density independent of u over the set

$$[y_1 \le u(1 - \sigma_{01}), \dots, y_r \le u(1 - \sigma_{0r}), \sum_{j=1}^r \theta_{ij} y_j \le u(1 - \sum_{j=0}^r \theta_{ij} \sigma_{0j}),$$

$$i = r + 1, \dots, k].$$

We see here that the coefficients of u are all nonnegative for, in particular, $\sum_{i=0}^{r} \theta_{ii}\sigma_{0i} = \sum_{i=0}^{r} \theta_{ii}EX_0X_i = EX_0X_i \leq 1, i = r+1, \cdots, k$. Thus the conditional probabilities in question are nondecreasing in u as is the function G_n . Now in order that the distribution function of $\sup_{(a,b)} X(\cdot)$ have a mass point at u_0 say, it is necessary that the sequence $\{G_n(u_0 + \epsilon)\}$ be unbounded, $\epsilon > 0$. However this cannot be so for

$$(\int_{u_0+\epsilon}^{\infty}\phi(u)\,du)G_n(u_0+\epsilon) \leq \int_{u_0+\epsilon}^{\infty}\phi(u)G_n(u)\,du \leq 1.$$

Although it is not needed here, it does follow from the nature of the densities

1045

involved, that $\sup_{(a,b)} X(\cdot)$ is absolutely continuous with density $\phi \cdot G$, G = $\lim_{n} G_{n}$ and nondecreasing.

We now suppose f is a continuous function on [0, 1] for which $f(k2^{-n}) \neq 0$, $k = 0, 1, \dots, 2^n, n = 1, 2, \dots$ If $f(t_1)f(t_2) < 0$ for $t_1 < t_2$, then f has at least one crossing zero in (t_1, t_2) . Consider the auxiliary variables

$$U_{nk} = 1 \quad \text{if } f((k-1)2^{-n})f(k2^{-n}) < 0,$$

= 0 otherwise, $k = 1, 2, \dots, 2^{n},$
 $Z_{n} = \sum_{k=1}^{2^{n}} U_{nk}, \quad n = 1, 2, \dots,$

 $\{Z_n\}$ is a nondecreasing sequence so let $Z = \lim_n Z_n$. As noted above $Z_n \leq C$ and therefore $Z \leq C$.

LEMMA 2. Z = C (both sides may be infinite).

PROOF. If C is finite, the crossing zeros are separated and so are counted by some Z_n , Z = C. If moreover Z is finite, then the crossing intervals $((k-1)2^{-n}, k2^{-n})$ counted by $Z_n = Z$ can be separated for n sufficiently large and f must be of constant sign on the remaining noncrossing intervals. Letting $n \to \infty$ we find points $0 = t_0 < t_1 < \cdots < t_{z+1} = 1$ such that f is of constant sign on $[t_i, t_{i+1}]$, $i = 0, 1, \dots, Z$. Thus, C is finite.

For the process $X(\cdot)$ the sample functions are a.s. different from zero at all points of the form $k2^{-n}$, therefore $\{Z_n\}$ is a.s. nondecreasing with limit C. We find the expectations ([1], p. 43)

$$EU_{nk} = (1/\pi) \operatorname{arc} \cos \rho(2^{-n}), \qquad EZ_n = (2^n/\pi) \operatorname{arc} \cos \rho(2^{-n}).$$

LEMMA 3. $(2^n/\pi)$ arc cos $\rho(2^{-n})$ has a finite limit if and only if $\rho''(0)$ exists, in this case $(2^n/\pi)$ arc cos $\rho(2^{-n}) \to (1/\pi)(-\rho''(0))^{\frac{1}{2}}$.

PROOF. Suppose $(2^n/\pi)$ arc cos $\rho(2^{-n})$ has a finite limit. Since

arc cos
$$\rho(2^{-n}) \ge \{[1 - \rho(2^{-n})]/[1 + \rho(2^{-n})]\}^{\frac{1}{2}}$$

it follows that $[1 - \rho(2^{-n})]/[1 + \rho(2^{-n})] = O(2^{-2n})$ or $1 - \rho(2^{-n}) = O(2^{-2n})$ Consequently, each of the following is bounded in n:

(i)
$$2^{2n+1} \int_{0}^{2^{n/4}} (1 - \cos \lambda 2^{-n}) dF(\lambda) + 2^{2n+1} \int_{2^{n/4}}^{\infty} (1 - \cos \lambda 2^{-n}) dF(\lambda),$$

(ii) $2^{2n+1} \int_{0}^{2^{n/4}} (\lambda^2 2^{-(2n+1)} + O(\lambda^4 2^{-4n})) dF(\lambda)$

$$+ 2^{2n+1} \int_{2^n/4}^{\infty} (1 - \cos \lambda 2^{-n}) dF(\lambda)$$

(iii)
$$\int_{0}^{2n/4} \lambda^2 dF(\lambda) + O(2^{-n}) + 2^{2n+1} \int_{2n/4}^{\infty} (1 - \cos \lambda 2^{-n}) dF(\lambda).$$

The last term of (iii) is positive and therefore $\int_0^\infty \lambda^2 dF(\lambda) < \infty$. If $\int_0^\infty \lambda^2 dF(\lambda)$ is .П.Кащук assumed finite, write $\rho(2^{-n}) = \cos \pi \lambda_n 2^{-n}$ for $0 < \lambda_n < 2^n$ and n sufficiently large (we omit the case $\rho \equiv 1$). Then

$$1 + \rho''(\xi)2^{-(2n+1)} = 1 - \lambda_n^2 \pi^2 2^{-(2n+1)} + O(\lambda_n^4 2^{-4n}), \qquad 0 < \xi < 2^{-n},$$

so that

$$1 = -\rho''(\xi)\lambda_n^{-2}\pi^{-2} + O(\lambda_n^{-2}2^{-2n}).$$

Now as $n \to \infty$, $\xi \to 0$ and $\lambda_n^2 2^{-2n} \to 0$ since $\cos \pi \lambda_n 2^{-n} \to 1$. Thus $\lambda_n = (2^n/\pi) \arccos \rho(2^{-n}) \to (1/\pi)(-\rho''(0))^{\frac{1}{2}}.$

Lemmas 1, 2 and 3 together prove the

THEOREM. Let $\{X(t), t \in [0, 1]\}$ be a real separable stationary Gaussian process having continuous sample paths, mean value function zero and covariance function ρ , $\rho(0) = 1$. $X(\cdot)$ has a.s. no tangential zeros and if N is the number of crossing zeros of $X(\cdot)$,

$$EN = (1/\pi)(-\rho''(0))^{\frac{1}{2}} \quad \text{if } \rho''(0) \text{ exists,}$$
$$= +\infty \qquad \text{if not.}$$

ФОРМУЛЫ РАЙСА

T=1 секунда, $S_n(f)$ =const в полосе частот $f_a \div f_b$

$$E(zero) = 2 \sqrt{\frac{\int_{0}^{\infty} f^{2}S_{n}(f)df}{\int_{0}^{\infty} S_{n}(f)df}} = 2 \sqrt{\frac{\frac{1}{3}(f_{b}^{3} - f_{a}^{3})}{f_{b} - f_{a}}} \quad [\Gamma u]$$
$$E(\max) = \sqrt{\frac{\int_{0}^{\infty} f^{4}S_{n}(f)df}{\int_{0}^{\infty} f^{2}S_{n}(f)df}} = \sqrt{\frac{\frac{3}{5}(f_{b}^{5} - f_{a}^{5})}{f_{b}^{3} - f_{a}^{3}}} \quad [\Gamma u]$$

А.П.Кащук

<u>Ссылка:</u>

M.Kac, On the distribution of values of trigonometric sums with linearly independent frequencies, Amer. J. Math. vol.65 (1943), pp. 609-615

А.П.Кащук

- ФУНДАМЕНТАЛЬНАЯ ХАРАКТЕРИТИКА ТАКАЯ ЖЕ, КАК И ПОЛОСА ЧАСТОТ

 $E(\max, I_1 \rightarrow 0) = \frac{E(zero)}{E(zero)}$ Гц]

(zero) E3 ∞

<u>Пример канала</u>

LHCB_MUON CARIOCA 8-CHANNEL CHIP (ONE CHANNEL DIAGRAM)

ЧАСТОТА РАЙСА ~ 25 МГЦ

А.П.Кащук

LHCB_MUON **DIALOG** CHIP 16 ВСТРОЕННЫХ 24-РАЗРЯДНЫХ ПЕРЕСЧЕТОК 16 ВСТРОЕННЫХ 8-РАЗРЯДНЫХ DAC

ИЗВЕСТНЫЙ МЕТОД **S-CURVE** ТРЕБУЕТ ИНЖЕКЦИИ НА ВХОД ТОЧНОГО СИГНАЛА И СКАНИРОВАНИЯ ЕГО ПОРОГОМ

НИЖЕ БУДЕТ ОПИСАНА НОВАЯ МЕТОДИКА СКАНИРОВАНИЯ ПОРОГОМ ШУМОВОЙ ДОРОЖКИ БЕЗ ИНЖЕКЦИИ КАКОГО-ЛИБО СИГНАЛА

А.П.Кащук

ПЕРЕИДЕМ ОТ ТОКА К ЗАРЯДУ

Число шумовых срабатываний дискриминатора уменьшается экспоненциально с увеличением порога,

<u>начиная с постоянной для данного усилителя-</u> фильтра величины

РАСПРЕДЕЛЕНИЯ ШУМОВЫХ СРАБАТЫВАНИЙ ДИСКРИМИНАТОРА

▶ ⊕OPMA – RICE-KAC

▶ ВЫСОТА → ЧАСТОТА РАЙСА

▶ СМЕЩЕНИЕ

≻ ШИРИНА

искомые параметры распределения

ИСХОДНЫЕ ДАННЫЕ ПОЛУЧЕНЫ СКАНИРОВАНИЕМ ШУМОВОЙ ДОРОЖКИ БЕЗ ИНЖЕКЦИИ КАКОГО-ЛИБО СИГНАЛА НА ВХОД УС-ЛЯ

✤ ДОБАВИВ К ДАННЫМ ОДНУ ТОЧ₭У 2 ИСКОМЫХ ПАРАМЕТРА НАХОДЯТСЯ <u>ФИТИРОВАНИЕМ</u>

А.П.Кащук

РАСПРЕДЕЛЕНИЯ ШУМОВЫХ СРАБАТЫВАНИЙ ДИСКРИМИНАТОРА

▶ ⊕OPMA – RICE-KAC

▶ ВЫСОТА → ЧАСТОТА РАЙСА

▶ СМЕЩЕНИЕ

≻ ШИРИНА

искомые параметры распределения

ИСХОДНЫЕ ДАННЫЕ – СКАНИРОВАНИЕ ПОРОГОМ ШУМОВОЙ ДОРОЖКИ БЕЗ ИНЖЕКЦИИ КАКОГО-ЛИБО СИГНАЛА НА ВХОД УС-ЛЯ

РАСПРЕДЕЛЕНИЯ <u>МЕТОДОМ ЦЕНТРИРОВАНИЯ</u> (ПОСЛЕ ТОГО, КАК СДВИГОМ НАЙДЕНО , ОПРЕДЕЛЯЮТСЯ 2 ИСКОМЫХ ПАРАМЕТРА)

70.8 - 60.8 - 55.8 - 65.8

ГРАДУИРОВКА ШКАЛЫ ПОРОГОВ МЕТОДОМ S-CURVE ДЛЯ ПЕРЕХОДА К ЕДИНИЦАМ ЗАРЯДА ЭТО ДОСТАТОЧНО СДЕЛАТЬ 1 РАЗ ДЛЯ КАНАЛА

А.П.Кащук

примеры применения в ЗАДАЧАХ ЯДЕРНОЙ ЭЛЕКТРОНИКИ НОВОЙ ХАРАКТЕРИСТИКИ -ЧАСТОТЫ РАЙСА И НОВОЙ МЕТОДИКИ РЕКОНСТРУКЦИИ ШУМОВЫХ РАСПРЕДЕЛЕНИЙ

www.elsevier.com/locate/pla

"количество транзисторов на кристаллах микросхем будет удваиваться каждые 2 года"

End of Moore's law: thermal (noise) death of integration in micro and nano electronics

False bit-flips due to thermal noise

The mean frequency $\nu(U_{\text{th}})$ of crossing a threshold amplitude limit U_{th} by a Gaussian noise process of zero effective value is given by the Rice formula [9– 11] $\sim 20 \text{ GHz}$

$$U_{\rm th} = 0.6 \, U_0$$

А.П.Кащук

 $\mathbf{28}$

ПРОПОРЦИОНАЛЬНЫХ КАМЕР МЮОННОГО ДЕТЕКТОРА УСТАНОВКИ LHCB

LHCB MUON_MWPC (4-LAYER)

Active area 1370 x 347 mm

А.П.Кащук

ПРИМЕР: ОДНА ИЗ КАМЕР (M2R4) ОДИН КАНАЛ

ПРИМЕР: СТАТИСТИКА ШУМОВОГО СЧЕТА В КАНАЛАХ НЕКОТОРЫХ МЮОННЫХ КАМЕР В ШАХТЕ ПОСЛЕ УСТАНОВКИ ПОРОГА

 $Q_{th}=5\cdot ENC \rightarrow f_n=93 \ \Gamma u$

33

Cosmic Rays in lab

Rate per channel reflects profile of wire strip width

≿ащук *А*.П.

ОТ ШУМА К СИГНАЛУ - ВЫБОР РАБОЧЕГО НАПРЯЖЕНИЯ

 $ENC \rightarrow Th \rightarrow Ggain \rightarrow HV$ via Diethorn's parameters

інср

Table presented in May 2009 (cont.)

	Расчет порогов, газ.усиления и HV											HV run 2010		
							2009	(ООКЈ						анных
	M3R1_DCRO	130±10	7,6±0,5	1,2	7,2	45000	38500	10,56	<u>2510±20</u>	<u>2450</u>			2530	20
										<u>6p.e.</u>				
										[13]				
	M3R1W	84±10	11,2±0,5	0,6	14		38500	10,56	2510±20	2450			2530	20
										[13]				
	M3R2_SCRO	115±10	8,5±0,5	1,1	6,6	41250	70583	11,16	2600±20				2620	20
	M3R2W	90±10	10,2±0,5	0.7	12		70583	11,16	2600±20				2620	20
	M3R3_SCRO	114	10	1,1	6,6	41250	70583	11,16	2600±20	<u>2550</u>	<u>2510 [15]</u>	2500-2520	2590	-10
PNPI										[18]	<u>9p.e.</u>	[15]		
->	M3R4W	185	8	1,6	9,6	60000	51333	10,85	2560±20				2570	10
	M4R1_SCRO	72±10	11,3±0,5	0,8	4,8	30000	51333	10,85	2560±20				2570	10
	M4R2_SCRO	139	9	1,3	7,8	48750	83417	11,33	2630±20		2660 [15]	2520-2800	2630	0
												[15]		
PNPI	M4R3_SCRO	139	9	1,3	7,8	48750	83417	11,33	<u>2630±20</u>		2650 [15]		2640	10
->	M4R4W	205	7,5	1,7	10,2	63750	54542	10,91	2560±20				2580	20
	M5R1_SCRO	75±10	11,1±0,5	0,8	4,8	30000	51333	10,85	2560±20				2580	20
	M5R2_SCRO	139	9	1,3	7,8	48750	83417	11,33	2630±20				2 5 50	<u>-80</u>
	M5R3_SCRO	145	8,8	1,3	7,8	48750	83417	11,33	<u>2630±20</u>		2630 [15]	2570-2700	2650	<u>^</u> 20
												[15]		
	M5R4W	225	7,2	1,9	11,4	71407	107110	11,58	2660±20		2660	2570-2750	2600	-60
											<u>3p.e.</u>	[15]	Временн	о снижены,

HV trip

СОГЛАСОВАНИЕ ИМПЕДАНСОВ СТРОУ-ТРУБКИ И УСИЛИТЕЛЯ (PANDA)

- прямое подключение трубки к усилителю CARIOCA со входным сопротивлением 45 Ω;
- горячее согласование (резистор 300 Ω, включенный последовательно входу усилителя);
- холодное согласование (транзисторная схема со входным сопротивлением $350 \ \Omega$)

Знание частоты Райса как дополнительной характеристики усилительного тракта позволяет

Полностью реконструировать распределение шумовых срабатываний, т.е. найти

- высоту распределения (интенсивность при нулевом пороге)
- смещение (пъедестал)
- средне-квадратичное значение (ENC эквивалентный шумовой заряд)
- Подчеркнем, измеренное таким способом значение *ENC* то же самое, что в амплитудном шумовом распределении
- Знание распределения, в свою очередь, позволяет оптимизировать режим работы детектора (экспериментальной установки) по многим параметрам, в частности,
 - убедиться в том, что шумы в канале реальной установки -
 - тепловые, что только и допустимо (важный вывод)
 - найти и установить минимальный порог регистрации событий
 - определить и установить минимальное газовое усиление камеры по заданному отношению сигналшум (усиление-порог)
 - > соответственно, установить минимальное рабочее напряжение
 - > как следствие, уменьшить нежелательные эффекты радиационного старения
 - оценить эффективность регистрации сигнала, соотнеся порог с первичной ионизацией в рабочем зазоре камеры

По характеру измеренного шумового распределения

о Облегчается устранение несовершенств экспериментальной установки

о Можно судить о правильности работы системы без подачи на вход каких-либо тестовых импульсов

Объективно судить о состоянии установки во времни:

с целью продления времени жизни детектора предложен как инструмент мониторинг шума в реальном времени эксперимента (см. ниже)

НЕСОВЕРШЕНСТВА ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ НЕДОСТАТОЧНОЕ ЭКРАНИРОВАНИЕ ИЛИ ОБРЫВ

А.П.Кащук

НЕСОВЕРШЕНСТВА ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ НЕСТАБИЛЬНОСТЬ - САМОВОЗБУЖДЕНИЕ

a

А.П.Кащук

SAFETY FACTOR?

<u>M4R4 PNPI#106</u> Измерения – в шахте. Доступа нет. Каналы маскированы. Already unstable channels

А.П.Кащук

ТЕОРЕМА РАЙСА УКАЗЫВАЕТ НА БЕСКОНЕЧНОСТЬ

THEOREM. Let $\{X(t), t \in [0, 1]\}$ be a real separable stationary Gaussian process having continuous sample paths, mean value function zero and covariance function ρ , $\rho(0) = 1$. $X(\cdot)$ has a.s. no tangential zeros and if N is the number of crossing zeros of $X(\cdot)$,

$$EN = (1/\pi)(-\rho''(0))^{\frac{1}{2}} \quad \text{if } \rho''(0) \text{ exists,}$$
$$= +\infty \qquad \text{if not.}$$

А.П.Кащук

СС – МОНИТОРИНГ АЛЬНОМ ВРЕМЕНИ ЭКСПЕРИМЕНТА (1368 ПРОП.КАМЕР, 2.5 МЛН.НИТЕЙ, 5 МЛН.ТОЧЕК ФИКСАЦИИ НИТЕЙ)

А.Кащук, О.Левицкая

Регулярное, напр. 1÷4 раза в месяц, сканирование порогов во всех каналах мюонного детектора (~20 мин.), вычисление *ENC* и построение зависимости поведения *ENC* во времени в каждом из 122112 каналов системы

<u> Время для сканирования – перезаполнение LHC (больше 1.5 час.)</u>

<u> Время обработки – off-line</u>

<u>Задача связана с продлением времени жизни детектора (эксперимента)</u> путем обнаружения на ранней стадии развития нежелательных <u>эффектов:</u>

1) радиационного старения мюонных камер (осаждение радикалов на электродах), что может вызвать в итоге микроразряды и даже эмиссию и создать дополнительный шум

2) дефектов приклейки и пайки отдельных нитей (ослабление натяжения сигнальных нитей), что может привести в итоге к микроразрядам

3) механической усталости конструкции камер (ослабление натяжения сигнальных нитей), что может привести в итоге к микроразрядам

4) образования деформаций в панелях камер - 'bubbles', что может привести к автоматическому отключению питания (должен наблюдаться трэнд)

РАЗРЯД С АНОДА (TOWNSEND DISCHARGE)

Должен существовать трэнд – плавный переход от нормального шумового распределения к аномальному

46

ЭМИССИЯ С КАТОДА (MALTER-EFFECT)

Должен существовать трэнд – плавный переход от нормального шумового распределения к аномальному

47

<u>Финал жизни детектора</u> – массовые разряды в газе и автоматическое отключение питания <u>(HV-trip)</u> Мониторинг шума может помочь избежать такого исхода своевременным вмешательством

LHCb week December 2010

System status in 2010 run

System very stable throughout the whole run Very little noise Very few dead channels M1: 0.5% dead + 2% ineff. M2-M5: 0.02% dead + 0.05% ineff.

Hits per trigger per cm². Faulty channels documented in the twiki

Заключение

- Введена специальная характеристика усилительного тракта частота Райса (или вершинная частота), которая физически обозначает шумовой счет при нулевом пороге и рассматривается в теории Райса, как ожидаемое в среднем число пересечений в секунду нулевого уровня случайным сигналом, распределенным по амплитуде по-Гауссу и прошедшим через линейный фильтр-усилитель
- Частота Райса определяется граничными частотами усилителя-фильтра, поэтому, как и полос<mark>а</mark> частот, является <u>фундаментальной характеристикой усилительного тракта</u>
- Частота Райса указывает на нулевой порог

0

- Частота Райса легко измеряется, если не приведена априори как характеристика, если не известна полоса частот, если нет аналогового выхода, но есть дискриминатор, а также возможность сканировать порог и считать импульсы в канале
- Знание частоты Райса позволяет реконструировать шумовое распределение как амплитудное, так и во времени (интенсивность шум. срабатываний), что позволяет оптимизировать детектор по многим параметрам
- Показана эффективность новой методики с применением частоты Райса на примерах задач ядерной электроники из эксперимнентов LHCb и PANDA

