Upgrade of the L1 Muon Trigger for CMS Lev Uvarov

Mar 28, 2013

Current design for: 25 ns, $L \le 1 \ge 1 \ge 34$, PU ~ 25

After LS1	# bunches	Luminosity (L) Hz/cm ²	Pile-up (PU)
25 ns	2760	9.2 × 10 ▲ 33	21
25 ns low emit	2320	1.6 × 10▲34	43
50 ns	1380	0.9–1.7 × 10▲34	40–76
50 ns low emit	1260	2.2 × 10 ▲ 34	108

Requirement after LS1: $L > 2 \times 10 \blacktriangle 34$, PU > 50

Constraint: Max L1 rate: ≤ 100 kHz (< 1kHz logging)

- Expect 6x trigger rate (3x Lu and 2x energy) increase after LS1 (same thresholds)
- Rising trigger thresholds (2x for Single Muon) to retain trigger rate will results in a detrimental impact on the physics acceptance.

After LS3: L= 5 x 10 \blacktriangle 34, Max L1 rate \leq 1 MHz (10 kHz logging)

Improve rate reduction capability without affecting efficiency

3

Present CMS Muon System

0.9 < CSC-DT Overlap < 1.25

Present Muon Trigger System

Preserves the complementarity and redundancy of the three separate muon detection systems until they are combined at the GT input

CSCTF	<= MPC track segments	

DTTF <= SC track segments PAC <= LB hits

CSCTF => up to 4 candidates

PAC => up to 4+4 candidates

Each candidate <= { p_T , $\varphi(0.05)$, η , Q}

GMT merges candidates to eliminate fake muons, assigns $p_{\rm T}$

- TF Track-Finder
- **PAC PAttern Comparator**
- **MPC Muon Port Card**
- **SC Sector Collector**
- LB Link Box

Lev Uvarov

Cathode Strip Chambers

6

CSC Electronics

Lev Uvarov

Present CSC Track-Finder

Mar 28, 2013

8

Lev Uvarov

PNPI

Track reconstruction in Sector Processor

- 1) conversion of trigger primitives into geometrical parameters $\{\eta, \varphi\}$.
- 2) multiple Bunch Crossing Analysis (BXA) => (+2BX)
- 3) Extrapolation Units (EUs) in η and $\phi =>$ up to 210
- 4) Track Assembly Units (TAUs) (12 collision + 6 halo)
- 5) Transverse Momentum (Pt) Assignment Units (PAU) (η , ϕ , $\Delta \phi$)
- 6) Final Selection Unit (FSU) (with ghost cancellation)
- 7) Output Multiplexer (OM) (priority of collision over halo)
- 8) BX Correction Unit (BXC) (to second trigger primitive)
- 9) Pt Assignment Lookup Table (Pt LUT)
- outputs encoded 5-bit Pt and 2-bit track quality (value)

Drift Tube Chambers

Z = -2, -1, 0, 1, 2 according to the Barrel wheel concerned

Present DT Track-Finder

PHTF in r-φ plane consists of 72 SPs in 6 crates

Each SP delivers 2 candidates per BX

72 = 12 wedges (30°) x 6 sectors

12 ETTF in r-z plane (one per wedge)

MB1-MB3 data only, delivers up to 2 candidates per

11

Present RPC Trigger

RPC – double gap chambers operated in avalanche mode **RB – 4 stations, 6 layers each RE – 4 stations, 3 layers each** 25 towers in eta, each subdivided into 144 segments in phi

444 Fibers

Pattern matching algorithm in 12 trigger crates, getting hits from 84 Link Boards to 84 Trigger Boards (up to 4 candidates per BX)

PAC has > 2 000 000 patterns preloaded

12

The Muon Level-1 Trigger is identified as an area which may be improved to meet requirements

- Muon trigger measures the momentum of muons using the magnetic field in the steel yoke of the CMS solenoid;
- Its resolution degrades with increasing momentum.
- This can be improved
 - by maximizing the number of chamber hits along a muon trajectory
 - by improving the precision and number of position and angular measurements participating in the track fit applied in the trigger logic.
- Isolation criteria can be applied using the energy deposits in the calorimeter in order to further reduce the rate of muons from heavy flavor jets.

Constraint:

CMS data-taking must never be put at risk!

Present Muon Trigger: Preserves the complementarity and redundancy of the three separate muon detection systems until they are combined at the GT input

Utilize the redundancy of the three muon detection systems earlier in the trigger processing chain

Combine muon hits at the input stage to the Muon Track-Finder layer rather than at its output

This new Muon Track-Finder will ultimately replace the separate track-finders for the Drift-Tube (DT) and Cathode Strip Chamber (CSC) muon triggers as well as the Resistive Plate Chamber (RPC) pattern comparator trigger.

Great progress in industry since 2000

Fiber links => 5x, 10x

Serial links => 10 Gb/s

FPGA => high speed, capacity, integration with serial links

Increase of flexibility

- High bandwidth optical links between trigger cards
- **Latest Xilinx FPGAs (series 6, 7) with large logic resources**
- Latest Xilinx FPGAs (series 6, 7) with up to 80 GTH Transceivers
- Large memory resources (for tabular calculations LUTs)

Base upgrade on small number of general purpose custom cards (vs current diversity)

Same on the software side

Implement cards in a telecommunication standard µTCA - 2006 (currently in VME64 – 1994/1997)

Commission (whole or slice) in parallel with the current trigger

15

Upgraded and Present Muon Trigger

CMS data-taking must never be put at risk! When commissioning updated muon trigger

Upgraded Muon Trigger

Lev Uvarov

Compare CMS Muon Systems 2000⇔2013

CMS-2000

CMS-2013

Lev Uvarov

The CSC Sector Processor and Muon Port Card systems will be upgraded to address four issues:

- 1. completing the φ coverage of the track finding system,
- restoring sensitivity to muon jet signatures with no MPC sorting, 2 track segment per chamber (3 => 18),
- 3. momentum resolution improvement (Larger PT LUT),
- providing a list of muons to the calorimetry system for isolation calculation and b-jet tagging (MT to CT interconnection)

CSCTF Issue 1: Coverage in φ

- no cross-talk between sectors in current CSCTF
- muons are lost at the edges of sector phi coverage
- estimate about 5% efficiency loss

CSC φ Cross-Talk Scheme

21

CSCTF Issue 2: Muon Jets (2 nearby Muons)

Trigger by requiring 2 nearby muons with PT>10..15 GeV

If some of the stubs are lost before the Track Finder, TF may not have enough stubs to build a muon track

Efficiency for:	MPC ≤ 3 stubs	no MPC limit	
muon jet of 4 muons	0.83	0.92	
muon jet of 8 muons	0.45	0.91	

Lev Uvarov

Current – pT assignment information Upgrade – full information available at SP φ => (0.05 vs 0.015) LUT: 2M x 16 => 1G x 18

The larger LUTs the better rate reduction

DTTF Issues

1.TSCs are located in aggressive environment => relocate to USC,2.Flat cable connection are unreliable (green salad) => go to serial

RPC Electronics

CSCTF (MTF7) Prototype

CSCTF (MTF7) Prototype

Optical AMC Prototype

Mar 28, 2013

Optical AMC Prototype

Core AMC Prototype

Estimated power consumption: ~40 W (assuming FPGAs nearly full) PT LUT mezzanine not included

CSCTF µTCA Layout

Chassis #1

Chassis #2

Possible layout of the endcap muon track-finding processors and corresponding muon sorter into three μ TCA crates.

All hardware modules are identical and occupy 2 slots.

The MCH and AMC13 in each crate are not shown.

Chassis #3

Lev Uvarov

- **Develop more sophisticated algorithms for** MTF
- Possibly switch from extrapolation to pattern matching (à la RPC PAC)
 - Extrapolation not well scalable with encreasing number of input track segments (6x !)
- Negotiate and set up interfaces between muon systems
 - → Ideally all muon systems (CSC, DT, RPC) should provide track segments in compatible formats
- Agree upon interface between TF layers and Sorting and Merging Layer

32

Participating Institutions

Institution HEPHY Vienna (AT)

University of Athens (GR) University of Ioannina (GR) INFN Padova (IT) University of Warsaw (PL) National Centre for Nuclear Research, Warsaw (PL) Warsaw University of Technology (PL) **CERN** (Switzerland)

Ohio State University (USA) **Rice University (USA)** University of California, San Diego (USA) University of Florida (USA) PNPI (Russia)

Areas of interest

Global Trigger and Muon Trigger **Trigger Control and Distribution System Global Trigger** Muon Trigger Muon Trigger **Muon Trigger** Muon Trigger ?????

CSCTF Cost Estimates

Date	Module/component	Stage	Cost
2012-09	Core logic module	prototype	\$29,130
2012-11	Optical module + backplane	prototype	\$19,250
2013-03	PT LUT module	prototype	\$16,800
2013-10	All modules	pre-prod	\$63,630
2014-05	All modules	production	\$317,760
2014-09	uTCA chassis, optical parts	COTS	\$102,136
		Total	\$548,706

L1 Trigger Upgrade Costs

Area	Total cost (kCHF)	
Calorimeter Trigger	2,527	
Endcap Muon Track Find	der 963	
Barrel Muon Track Finde	er 883	
Overlap Muon Track Fine	der 593	
Global Trigger and GMT	628	
Total cost	5,593	

35

Back up slides

Pattern Matching Algorithm

SP upgrade - track finding

- current design φ comparisons, does not scale well
- switch to pattern matching system for upgrade

37

Schedule Estimation	Project Stage	Project Materials	Project Labor
05.2013 12.2013	Prototype Development	μTCA Crate assembled AMC13 module, Core and Optical modules, MPC Port Card Prototype	Track Finder Prototype Simulation and Test Software Interface Prototype Development Firmware Prototype Development
01.2014 09.2014	Track Finder Production and Testing	Track Finder Modules and Firmware	Track Finder Modules Debugging and Testing

Schedule Estimation	Project Stage	PNPI Project Manpower	Cost Estimation
05.2013 - 12.2013	Prototype Development	4 Electronics Engineers 2 Software Engineer	200 KCHF
01.2014 - 09.2014	Track Finder Production and Testing	4 Electronics Engineers 2 Software Engineer	393 KCHF

