ПРЕЦИЗИОННОЕ ИЗМЕРЕНИЕ СКОРОСТИ ЗАХВАТА МЮОНА В ВОДОРОДЕ И ОПРЕДЕЛЕНИЕ ПСЕВДОСКАЛЯРНОГО ФОРМ ФАКТОРА ПРОТОНА g_P

PNPI participants in MuCAP collaboration*):

V.A. Andreev, V.A. Ganzha, P. A.Kravtsov, A.G. Krivshich, M.P. Levchenko, E.M. Maev, O.E. Maev, G.E. Petrov, G.N. Schapkin, G.G. Semenchuk, M. A. Soroka, A.A. Vasilyev, A.A. Vorobyov, M.E. Vznuzdaev

Precision Measurement of Muon Capture on the Proton *"µCap experiment"*

$$\mu^{-} + p \rightarrow \nu_{\mu}^{+} n$$

www.npl.uiuc.edu/exp/mucapture/

Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Paul Scherrer Institut, PSI, Villigen, Switzerland University of California, Berkeley, UCB and LBNL, USA University of Illinois, Urbana-Champaign, USA Universite Catholique de Louvain, Belgium TU Munich, Garching, Germany Boston University, USA University of Kentucky, USA

Muon Capture on Proton

$$\mu^{-} + p \rightarrow (\mu^{-}p)_{1S} \rightarrow \nu_{\mu} + n$$
 BR=0.16%

MuCap goal: to measure μ p-capture rate Λ with 1% (or better) precision

μp-capture offers a unique probe of the nucleon's electroweak axial structure

Muon capture on proton

$$V_{\alpha} = g_{V}(q^{2}) \gamma_{\alpha} + \frac{i g_{M}(q^{2})}{2 M_{N}} \sigma_{\alpha\beta} q^{\beta}$$
$$A_{\alpha} = g_{A}(q^{2}) \gamma_{\alpha} \gamma_{5} + \frac{\mathbf{g}_{P}(q^{2})}{m_{\mu}} q_{\alpha} \gamma_{5}$$

Стандартная Модель и структура нуклонов $g_v = 0.9755 \pm 0.0005$ $g_a = 1.245 \pm 0.003$ $g_m = 3.582 \pm 0.003$ $g_{P}(th) = 8.26 \pm 0.23$ $g_{P}(OMC) = 6 - 12$ $g_{P}(RMC) = 12.2 \pm 0.9 \pm 0.4$

pseudoscalar form factor g_P

PCAC:

$$g_P(q^2) = \frac{2 m_\mu M}{m_\pi^2 - q^2} g_A(0)$$

g_P=8.7

heavy baryon chiral perturbation theory:

$$g_P(q^2) = \frac{2 m_\mu g_{\pi NN} F_\pi}{m_\pi^2 - q^2} - \frac{1}{3} g_A(0) m_\mu M r_A^2$$

$$g_{p} = (8.74 \pm 0.23) - (0.48 \pm 0.02) = 8.26 \pm 0.23$$

A calculations O(p³) show good convergence: 100 % 25 % 3 % delta effect small LO NLO NNLO

$g_{\pi NN}$
13.31(34)
13 0(1)
12.05/0
15.05(8)

μCap

*NLO result

author	year	g₽	Λ_{s}	Λ_{T}	comment
Primakoff	1959		664(20)	11.9(7)	smaller g _A
Opat	1964		634	13.3	smaller g _A
Bernard et al	1994	8.44(23)			
Fearing et al	1997	8.21(9)			
Govaerts et al	2000	8.475(76)	688.4(38)	12.01(12)	
Bernard et al	2000/1		687.4 (711*)	12.9	NNLO, small scale
Ando et al	2001		695 (722*)	11.9	NNLO

Muon capture on proton Sensitivity to Form Factors

$$\frac{\delta\Lambda_S}{\Lambda_S} = 2\frac{\delta V_{ud}}{V_{ud}} + 0.466\frac{\delta g_v}{g_v} + 0.151\frac{\delta g_m}{g_m} + 1.567\frac{\delta g_a}{g_a} - 0.179\frac{\delta g_p}{g_p}$$

Experimental information on g_P

Ordinary Muon Capture

 $\mu^{-} + p \rightarrow \nu_{\mu} + n$

BR~10⁻³, 8 experiments 1962-82, BC, neutron, electron detection "in principle" most direct g_p measurement

Radiative Muon Capture

 $\mu^{-} + p \rightarrow \nu_{\mu} + n + \gamma$

BR~10⁻⁸, TRIUMF (1998), $E_{\gamma} > 60 \text{ MeV}$, 297 ± 26 events closer to pion pole $\rightarrow 3x$ sensitivity of OMC theory more involved (min substitution, ChPT)

Muon capture in nuclei

 $\mu + {}^{3}\text{He} \rightarrow \nu + {}^{3}\text{H} \quad \Lambda_{st} = 1496 \pm 4 \text{ s}^{-1} \quad \text{PSI} (1998)$ $g_p = g_p^{\text{th}} (1.08 \pm 0.19) \text{ error dominated by 3-N theory}$ correlation measurements

• π electro production at intreshold

μCap

Ref.	n/n_o	$\Delta t \ (\mu s)$) S:O:P	Rate (s ⁻¹)	$g_p(-0.88m_\mu^2)$
Ordinary muon capture					
Hildebrand (1962)		0.0	0.15:0.77:0.07	420 ± 120	19.5 ± 11.6
Hildebrand and Doede (1962)		0.0	0.15:0.77:0.07	428±85	18.7 ± 8.2
Bertolini et al. (1962)		0.0	0.15:0.77:0.07	450 ± 50	16.4 ± 4.9
Bleser et al. (1962)	1.0	1.0	0.01:0.88:0.11	515 ± 85	6.3 ± 8.7
Rothberg et al. (1963)	1.0	1.2	0.01:0.88:0.12	464±42	11.4 ± 4.2
Alberigi-Quaranta et al. (1969)	0.014	0.9	1.00:0.00:0.00	651±57	11.0 ± 3.8
Bystritskii et al. (1974)		1.4	1.00:0.00:0.00	686±88	8.7±5.7
Bardin et al. (1981a) (original τ_+)	1.0	2.5		460 ± 20	7.9 ± 3.0
(new τ_+)				435±17	10.6 ± 2.7
Radiative muon capture					
Wright et al. (1998) (original theory) 1.0	0.365	0.06:0.85:0.09	$(2.10\pm0.21)\times10^{-8}$	$12.4 \pm 0.9 \pm 0.4$
(new theory)	10				$12.2 \pm 0.9 \pm 0.4$

50 years of effort to determine gPd +

"Radiative muon capture in hydrogen was carried out only recently with the result that the derived *gP* was almost 50% too high. If this result is correct, it would be a sign of new physics... "

- Lincoln Wolfenstein (Ann.ReNucl.Part.Sci. 2003)

Pioneers of muon capture experiments

Emilio Zavattini 1927-2007

1969 Bologna-Pisa-CERN

H2 –target 8 atm	$g_p = 11.0 \pm 3.8$
------------------	----------------------

1973 Dubna group

H2 -- target 41 atm

Expt. Problems

- Wall effects
- Background
- Neutron detection efficiency

Стратегия МиСар эксперимента

Измерение времени жизни (τ)
с точностью 10ppm, регистрация
μ→eVV распадов (10^10)

- Однозначность интерпретации захват из F=0 состояния µр атома при плотности 1% LH2
- Использование методики активной мишени (ТРС) с точной регистрацией координат и времени остановок мюонов, реконструкция треков электронов к точке распада.
- Использование ультрачистого водорода Cz < 10ppb</p>
- Контроль примесей по реакциям: $\mu p + Z \rightarrow \mu Z + p$, Cz~10ppb.
- Обеспечение изотопической чистоты водорода µp + d → µd + p + 134eV, примесь Cd <1ppm, диффузия µd ~cm</p>

PSI meson factory

600MeV protons 2mA extracted proton beam 100% duty factor High intensity muon channels Muon-on-request mode

PNPI in PSI since 1986

- Muon catalyzed dd-and dt-fusion experiments (completed)
- Muon capture on He-3 (completed)
- Muon capture on proton (completed)
- Muon capture on deuteron (in progress)

Schematic view of the TPC

The trajectories of charged particles are measured in 3D space with resolution (rms) 1-2 mm.

The signal on TPC anode wires from μ -e decay event

RUN=17, event=45

μ

Display of a typical event with μ -capture reaction on impurity

IV. the new protium isotope separation facility: production of ultra-depleted protium

Single muon requirement (to prevent systematics from pile-up)

- limits accepted μ rate to ~ 7 kHz,
- while PSI beam can provide ~ 70 kHz

Raw Data muPC1/TPC ePC1 ePC2 eSC

Start and stop-time-scans consistency

Общая набранная статистика

Год	μ+ (10^9)	μ- (10^9)	Cd(ppb)	H2O(ppb)
2004	0.2	2.0	~1400	~70
2005	1.4	3.5	~1400	36
2006	1.56	8.6	<60	18
2007	5.4	6.0	<6	8.7
Общий об	8.56 ъем данных за	20.1 2004-2007 гг.	~ 100 TB	

TABLE: Applied corrections and systematic errors.

Effect	Corrections	and uncertainties [s-1]
	R06	R07
Z > 1 impurities	7.8 + - 1.9	4.5 + - 0.9
mu-p scatter removal	12.4 + - 3.2	7.2 + - 1.3
mu-p diffusion	3.1 + - 0.1	3.0 + - 0.1
mu-d diffusion	+ - 0.7	+ - 0.1
Fiducial volume cut	+ - 3.0	+ - 3.0
Entrance counter ineff.	+ - 0.5	+ - 0.5
Electron track def.	+ - 1.8	+ - 1.8
Τđītal corr. λ _{μ-}	23.3 + - 5.2	14.7 + - 3.9
=======================================	===============	
mupp bound state (D _{µp})) 12.3 + - 0.	.0 12.3 + - 0.0
ppm7u states (D _{ppµ}) 17.7 + - 1.9	17.7 + - 1.9

Результаты анализа данных за 2004-2007 год

 $N_{\mu} = 1.2 \times 10^{10}$

 $\lambda_{\mu} = 455851.4 \pm 12.5$ stat ± 8.5 syst s⁻¹ (MuCAP 2004).

 $\lambda_{\mu} = 455857.3 \pm 7.7$ stat ± 5.1 syst s⁻¹ (MuCAP 2006).

 $\lambda_{\mu} = 455853.1 \pm 8.3$ stat ± 3.9 syst s⁻¹ (MuCAP 2007).

Muon Capture Rate
$$\lambda_s$$

$$\lambda_{s} = \lambda_{\mu-} - (\lambda_{\mu+} - D_{\mu}) + D_{\mu\mu}$$

 $D\mu p = 12.3 \text{ s-1}$ (µp bound state)

Dpp $\mu = 17.7 \text{ s-1}$ ($\lambda pp\mu = (1.94 \pm 0.06)\mu \text{s-1}$)

Результаты анализа данных за 2004-2007 год

$$\begin{split} \lambda_{\mu^+} &= 455170.05 \pm 0.46 \text{ s}^{-1} \text{ (}\mu\text{LAN experiment)} \\ \lambda_{\mu^-} &= 455854.9 \pm 5.4 \text{stat} \pm 4.7 \text{syst} \text{ s}^{-1} \text{ (MuCap 2004-2007)} \\ \Lambda_{\text{S}}^{\text{MuCap}}(\text{aver.}) &= 714.9 \pm 5.4 \text{stat} \pm 5.3 \text{syst} \text{ s}^{-1} \\ \Lambda_{\text{S}}^{\text{Th}} &= 693.3 \text{ s}^{-1} \text{ (aver.)} + 19.4 \text{s}^{-1} \text{ (r.c.)} = 712.7 \pm 3.0 \pm 3.0 \text{ s}^{-1} \\ g_{\text{P}}^{\text{MuCap}} &= g_{\text{P}}^{\text{Th}} - 0.065 \text{ x} \text{ (}\Lambda_{\text{S}}^{\text{MuCap}} - \Lambda_{\text{S}}^{\text{Th}} \text{)} \end{split}$$

 $g_{P}^{MuCap} = 8.06 \pm 0.48(exp) \pm 0.28(th)$

 $g_P^{Th} = 8.2 \pm 0.2 (2.8\%)$

Precise and unambiguous MuCap result solves longstanding puzzle

Earlier, in 1998, we have studied the muon capture on ³He. The muon capture

rate in the channel $\mu^{\mbox{\tiny -}}$ + ${}^{\mbox{\tiny 3}}\mbox{\rm H}$ + v_{μ} was measured with high precision :

$$\Lambda_{\rm c} = 1496.0 \pm 4.0 \, {\rm s}^{-1} \, (0.3\%)$$

This result have been used in some theoretical analyses : L.E. Marcucci et al. (2012) [1] and D. Gazit(2009) [2] for deriving the Λ_c and the proton's pseudoscalar form factor g_p . $\Lambda_c = 1494 \pm 21s^{-1}$ [1] and $\Lambda_c = 1499 \pm 12 s^{-1}$ ([2]. $g_p = 8.13 \pm 0.6$ [2]

MuCap collaboration

Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Paul Scherrer Institute (PSI), Villigen, Switzerland University of California, Berkeley (UCB and LBNL), USA University of Illinois at Urbana-Champaign (UIUC), USA Université Catholique de Louvain, Belgium TU München, Garching, Germany University of Kentucky, Lexington, USA Boston University, USA