

Multiple Jet Production at Low Transverse Momenta in Proton-Antiproton Collisions at $\sqrt{s}=1.96$ TeV

Gennady Obrant Petersburg Nuclear Physics Institute Gatchina, Russia

Analysis Goals

- New experimental data on the multiple jet production at low \textbf{p}_{τ}
- Study of the multiple parton interaction (MPI)
- Parameters of the partonic matter distribution

Features of low p_T jet study

- One primary vertex to suppress multiple interactions
- Using of minimum bias and QCD triggers
- Event-by-event trigger efficiencies
- MC smearing of a jet by p_T resolution near the 6 GeV jet threshold
- Big systematic uncertainties of the energy calibration
- Increased MC uncertainty from the p_T resolution

Analysis

- QCD triggers: JT_8TT, JT_15TT
- MB triggers: min_bias, min_bias_NCU, min_bias_nim_NCU
- QCD ~100M events, MB ~60M events luminosity ~100nb⁻¹(QCD), 0.45nb⁻¹(MB)

Events, Jets, and Vertices

- Events selection: |Z|≤50cm, N^{tracks}≥3, MET<0.7p_{T1}
- Jet selection: JCCA, Standard Jet ID, p_T>20GeV, |η|<3.0

- JES: jetcorr v07-02-78, Dijet JES(J4S), 4Vector Correction (50-100)%, Uncertainty (2-6)%
- Vertex Efficiency=93.0±0.5%

JT_8TT and JT_15TT ($\eta - p_{\tau}$) trigger efficiency

Trigger Efficiency (trigeff_cafe)

Ratio of the JT_15TT and JT_8TT cross sections

Ratio of the QCD and MB cross sections

Raw data and Run I results

MC

```
d0_mcpp, d0_mcpp_gen, mcpp_gen \Rightarrow Standalone MC
                        d0_runjob
                            11
   Full simulation
                                  Generator level
Reco MC jets Particle jets Particle jets
              smearing
                           (p<sub>+</sub>,η,φ,M) smearing
          Smeared MC jets
                                    Smeared MC jets GL
```


MC

- PYTHIA, PDF CTEQ6L1
- Multiple Parton Interaction (MPI) Tune A 2 Gaussian partonic matter distribution: $\beta=0.32$ – core fraction $a_2/a_1=0.4$ – relative size $p_{T0}=2.0$ GeV – infrared cut-off
- P_{T} resolution (dijet data) 20% η and ϕ resolution (MC) 0.07 mass resolution (MC) 20% at p_{T} = 20GeV

ALPGEN (CTEQ6L1)

- Minimum parton $p_{T} 6GeV$
- Minimum parton-jet p_{τ} in matching 6GeV
- Parton-parton η - ϕ distance $\Delta R > 0.9$
- Jet-parton $\eta-\phi$ distance $\Delta R < 0.6$ in matching
- Factorization and renormalization scale $Q = \Sigma_{jets} p_T^{2}$

Jet 6GeV threshold correction

Correction and reweighting in unfolding

Raw data and smeared MC jets

Raw data and particle MC jets

Unsmearing correction factors

Model dependence of unfolding

Unfolded data and PYTHIA with CTEQ6L1, $\beta = 0.32$, $a_2/a_1 = 0.4$

(Data – PYTHIA)/PYTHIA

Unfolded data and ALPGEN with CTEQ6L1, $\beta = 0.30$, $a_2/a_1 = 0.5$

Relative azimuthal angle distributions and PYTHIA

Anglular 3-jet study and PYTHIA

4-jet relative azimuthal angle distributions and PYTHIA

Relative azimuthal angle distributions and ALPGEN

Anglular 3-jet study and ALPGEN

4-jet relative azimuthal angle distributions and ALPGEN

LLO and NLO pdfs

Matrix element

Solution Data with PYTHIA and NLO; MSTW2008, $\beta = 0.39$, $a_2/a_1 = 0.17$, $p_{T0} = 2.5 \text{GeV}$

Ambiguous variant with $\beta = 0.32$, $a_2/a_1 = 0.22$, $p_{TO} = 2.0$ GeV and

basic variant

Ambiguous variant with $\beta = 0.32$, $a_2/a_1 = 0.22$, $p_{\tau_0} = 2.0$ GeV and basic variant

Ambiguous variant with $\beta = 0.32$, $a_2/a_1 = 0.22$, $p_{T0} = 2.0$ GeV and basic variant

basic variant

\mathbb{I} (a₂/a₁-β) plot of minimum χ^2

 $< r^{2} > \sim 1 - \beta + \beta a_{2}^{2} / a_{1}^{2}$

Elastic cross section at $\sqrt{s=1.8TeV}$

Conclusions

- New data were obtained on the multiple jet production at low $p_{\!\!\!\!\!_{T}}$
- Data agree with PYTHIA, with ALPGEN for 1, 2, 3-jet, and with NLO for 1, 2-jet at p_T>40GeV. ALPGEN overestimates ~20% 4-jet sample
- Core fraction $\beta = (0.39 0.49) \pm 5\% \pm 21\%$, relative size $a_2/a_1 = (0.17 - 0.20) \pm 4\% \pm 14\%$

Appendix:

General χ^2 of p_{τ} distributions vs β

General χ^2 of 2 and 3-jet azimuthal distributions vs β

General χ^2 in 3-jet study vs β

General χ^2 of 4-jet azimuthal distributions vs β

8

Ratio of the min_bias+min_bias_NCU and min_bias_nim_NCU

Ratio of the QCD and MB cross sections (systematics Up)

Ratio of the QCD and MB cross sections (no "nim")

Systematic uncertainty in the JT_8TT trigger efficiency

Systematic uncertainty in the JT_15TT trigger efficiency

Unfolded inclusive jet cross section and reco MC jets

Ratio of unfolded inclusive jet and multiple jet cross section

Main systematic uncertainties

Main systematic uncertainties

Main systematic uncertainties

