Spin transfer coefficient D_{LL} , to Λ hyperon

D. Veretennikov

Content

- Introduction
- Experiment HERMES
- Reconstruction of $\Lambda(\overline{\Lambda})$ events
- Extraction of $D_{LL'}$
- Results
- World data
- Theoretical models
- Conclusion and outlook

$\Lambda^0 = (uds)$

Motivation

Constituent quark model (CQM) $\Delta u = \Delta d = 0$, $\Delta s = 1$ Fails for proton, what about Λ ? > SU(3) flavor symmetry $\Delta u = \Delta d = -0.09 \pm 0.06$, $\Delta s = 0.47 \pm 0.07$ Used SU(3) rotation for proton data **b** Burkard/Jaffe $\Delta u = \Delta d = -0.23 + 0.06$, $\Delta s = 0.58 + 0.07$ ^L Also SU(3) rotation for proton data with $\Delta \overline{s} \equiv 0$ in proton \blacktriangleright Lattice QCD $\triangle u = \triangle d = -0.02 + 0.04$, $\triangle s = 0.68 + 0.04$ Breaking SU(3) symmetry

Definition of $D_{LL'}$

4

Events selection

 leading π rejection (in HERMES kinematics proton is always leading) :

> Threshold Cherenkov det. 1996-1997

Ring imaging Cherenkov 1998-2007

h⁺h⁻ pair background rejection :

Vertex separation d(V₁,V₂) > 5 cm

Extraction of $D_{LL'}$

Formalism extraction of $D_{LL'}^{\Lambda}$

Helicity balanced data sample $[P_B] = \frac{1}{L} \int P_B \, dL = 0$ $\frac{dN}{d\Omega_p} = \frac{dN_0}{d\Omega_p} (1 + \alpha P_{L'}^A \cos \theta_{pL'})$ Moment method in simple 1Dim case

$$\langle P_B \cos \theta_{pL'} \rangle = \frac{\llbracket P_B \rrbracket \langle \cos \theta_{pL'} \rangle_0 + \alpha D_{LL'} \llbracket P_B^2 \rrbracket \langle \cos^2 \theta_{pL'} \rangle_0}{1 + \alpha D_{LL'} \llbracket P_B \rrbracket \langle \cos \theta_{pL'} \rangle_0} \quad \stackrel{\llbracket P_B \rrbracket = \mathbf{0}}{=} \quad \alpha D_{LL'} \llbracket P_B^2 \rrbracket \langle \cos^2 \theta_{pL'} \rangle_0$$

$$\langle \cos^2 \theta_{pL'} \rangle = \frac{\langle \cos^2 \theta_{pL'} \rangle_0 + \alpha D_{LL'} \llbracket P_B \rrbracket \langle \cos^3 \theta_{pL'} \rangle_0}{1 + \alpha D_{LL'} \llbracket P_B \rrbracket \langle \cos \theta_{pL'} \rangle_0} \quad \stackrel{\llbracket P_B \rrbracket = 0}{=} \quad \langle \cos^2 \theta_{pL'} \rangle_0$$

 $D_{LL'}^{\Lambda} = \frac{1}{\alpha \left[\!\left[P_B^2\right]\!\right]} \cdot \frac{\langle P_B \cos \theta_{pL'} \rangle}{\langle \cos^2 \theta_{pL'} \rangle} \qquad \begin{array}{l} \text{No MC simulation of} \\ \text{acceptance needed} \end{array}$

 \blacktriangleright Slightly more complicated iteration procedure used in case of unbalanced P_B

> 3 projection of $D_{LL'}^{\Lambda}$ calculated

3Dim extraction formalism verified with help of MC

Definition of coordinate system

\$ 7*

2 variants of
system
$$\vec{k}_{z} = \hat{\vec{p}}_{\Lambda}, \quad \vec{k}_{y} = \hat{\vec{p}}_{\Lambda} \times \hat{\vec{p}}_{\gamma*}, \quad \vec{k}_{x} = \vec{k}_{y} \times \vec{k}_{z}$$

$$\vec{k}_{z} = \hat{\vec{p}}_{\gamma*}, \quad \vec{k}_{y} = \hat{\vec{p}}_{\Lambda} \times \hat{\vec{p}}_{\gamma*}, \quad \vec{k}_{x} = \vec{k}_{y} \times \vec{k}_{z}$$

3 dimensional analysis

System of linear equations $\sum_{k} D_{L,k} a_{i,k} = c_i$

$$\sum_{k=x,y,z} \mathbf{D}_{Lk} \left\langle \frac{D^{2}(y)\cos\theta_{k}\cos\theta_{i}}{1+\alpha D(y)\sum_{j=x,y,z} P_{B,i}\mathbf{D}_{Lj}\cos\theta_{j}} \right\rangle = \frac{1}{\alpha} \frac{\left\langle P_{B}D(y)\cos\theta_{i} \right\rangle - \left[\left[P_{B} \right] \right] \left\langle D(y)\cos\theta_{i} \right\rangle}{\left[\left[P_{B}^{2} \right] \right] - \left[\left[P_{B} \right] \right]^{2}} \underbrace{C_{i}} \right\rangle}$$

Here $\langle ... \rangle$ average over <u>experimental</u> data set [...] average with luminosity $\theta_{(x,y,z)}$ angle between proton and corresponding axis

Iteration procedure is used to find D_{Lk}

$$D_{Lk}^{(0)} \xrightarrow{\text{calculate } a_i^k} \rightarrow a_i^{k(0)} \xrightarrow{\text{solve } a_i^k D_{Lk} = c_i} \rightarrow D_{Lk}^{(1)} \rightarrow \dots \quad \text{Convergence in three steps}$$

Integrated over kinematics result

 $D_{Ix}^{\Lambda} = -0.016 \pm 0.042_{stat} \pm 0.017_{syst}$ $D_{Lv}^{\Lambda} = 0.037 \pm 0.037_{stat} \pm 0.016_{svst}$ $D_{Lv}^{\Lambda} = 0.037 \pm 0.037_{stat} \pm 0.016_{svst}$ $D_{I_z}^{\Lambda} = 0.186 \pm 0.040_{stat} \pm 0.012_{syst}$ $|D_{LL'}^{\Lambda}| = 0.187 \pm 0.040_{stat} \pm 0.012_{syst}$ $|D_{LL'}^{\Lambda}| = 0.197 \pm 0.039_{stat} \pm 0.015_{syst}$

 $D_{Ix}^{\Lambda} = -0.133 \pm 0.039_{stat} \pm 0.015_{syst}$ $D_{L_{z}}^{\Lambda} = 0.147 \pm 0.038_{stat} \pm 0.015_{syst}$

Due to parity conservation y - component must be zero

Dependences on kinematic variables

Dependences on kinematic variables

 $\checkmark D^{\Lambda}_{LL'}$ must not depend on y if single scattering model of DIS is valid

Systematic studies

$$D_{Lx}^{hh} = 0.017 \pm 0.006$$
$$D_{Ly}^{hh} = 0.015 \pm 0.006$$
$$D_{Lz}^{hh} = 0.012 \pm 0.006$$
$$D_{Lz}^{Ks} = 0.019 \pm 0.030$$

トレ

$$D_{Lx}^{Ks} = 0.019 \pm 0.030$$
$$D_{Ly}^{Ks} = 0.015 \pm 0.031$$
$$D_{Lz}^{Ks} = -0.001 \pm 0.033$$

Integrated over kinematics result

$$D_{Lx}^{\bar{\Lambda}} = -0.07 \pm 0.10_{stat} \pm 0.02_{syst}$$
$$D_{Ly}^{\bar{\Lambda}} = 0.05 \pm 0.10_{stat} \pm 0.02_{syst}$$
$$D_{Lz}^{\bar{\Lambda}} = 0.13 \pm 0.08_{stat} \pm 0.02_{syst}$$
$$\left| D_{Lz}^{\bar{\Lambda}} \right| = 0.15 \pm 0.09_{stat} \pm 0.02_{syst}$$

Statistics is not enough to solid conclusion

World data

Theoretical models

 \blacktriangleright Constituent quark model (CQM) $\Delta u = \Delta d = 0$, $\Delta s = 1$

 \blacktriangleright Burkard/Jaffe Δ u= Δ d=-0.23±0.06, Δ s=0.58±0.07

 \blacktriangleright SU(3) flavor symmetry $\Delta u = \Delta d = -0.09 \pm 0.06$, $\Delta s = 0.47 \pm 0.07$

 \blacktriangleright Lattice QCD $\triangle u = \triangle d = -0.02 \pm 0.04$, $\triangle s = 0.68 \pm 0.04$

 Λ spin

structure

All models predict negative or small positive value

Conclusion and outlook

- > All three components of spin transfer D_{LL}^{Λ} , and $D_{LL}^{\overline{\Lambda}}$, have been measured in DIS of charge leptons at HERMES
- > It is shown that D_{LL}^{Λ} , is positive (statistically significant) and mostly directed along the momentum of virtual photon
- > It is found that $D_{LL}^{\overline{A}}$, is less then D_{LL}^{A} , or comparable with
- > Final paper on D_{LL}^{Λ} , and $D_{LL}^{\overline{\Lambda}}$, at HERMES in progress
- ➢ Next step is spin transfer in photoproduction regime $Q^2 \cong 0 \text{ GeV}^2$ from beam (D_{LL} ,) and target (K_{LL} , partly done)

False $D_{LL'}$ for h^+h^- and K_s

$$D_{LL'}^{hh} = 0.021 \pm 0.006$$
$$D_{LL'}^{Ks} = 0.023 \pm 0.054$$

