Поиск тяжелых векторных бозонов W' и W* в эксперименте ATLAS

Соловьев В.М.

21 марта 2012

ОФВЭ, ПИЯФ

Outline

- Introduction
- Search strategy
- ATLAS detector overview (Inner Detector, Calorimeter, Muon System)
- Signal and Background
- Common Event selection
- Electron event selection
- Muon event selection
- Data-driven QCD background estimate
- Results with 2011 data
- Summary

Introduction

- Many models predict the existence of heavy gauge bosons
- Search for a new charge ±1, spin 1 gauge boson
- Use Sequential Standard Model (SSM) W' as a benchmark model
- W' has the same couplings to fermions as SM W

- q w'
- Use lepton decay mode for analysis: electron (or muon) and neutrino

Introduction

 Many models predict the existence of states decaying to lepton and neutrino

One of such models is excited boson W* [M. Chizhov, G. Dvali, Phys.Lett. B703 (2011) 593-598].

W* has also charge ±1 and spin 1.

It has different interactions than W'. It is coupled to fermions tensor currents which mix both left-handed and right-handed fermions.

$$\mathcal{L}_{W'} = \overline{\psi} \gamma^{\mu} (g_V + g_A \gamma^5) \psi \cdot W_{\mu} \qquad \qquad \mathcal{L}_{W*} = \frac{g}{2\Lambda} \overline{\psi} \sigma^{\mu\nu} \psi \cdot (\partial_{\mu} W_{\nu}^* - \partial_{\nu} W_{\mu}^*)$$

 Introduction of such bosons helps to solve the Hierarchy Problem

Introduction

W' and W* has significantly different kinematic distributions

It can be used in future for model-dependent analysis

Search strategy

- Search for high mass states with lepton+MET
- The observable is transverse mass:

$$m_T = \sqrt{2p_T^l E_T^{miss}(1 - \cos \varphi_{lv})}$$

- Look for significant excess above background expectations
- $\hfill If no excess is observed then set limit on the <math display="inline">\sigma^*BR$ using bayesian analysis

ATLAS detector overview

Inner detector

Calorimeter

- Liquid Ar hadronic end-cap calorimeter:
 - Copper as absorber
 - covers 1.5 < |η| < 3.2
- Liquid Ar forward calorimeter:
 - copper (1 module) and tungsten (2 modules) as absorbers
 - covers $3.1 < |\eta| < 4.9$

 Energy resolution of LAr electromagnetic calorimeter:

$$\frac{\sigma(E)}{E} \sim \frac{10\%}{\sqrt{E}} \oplus 0.7\%$$

Muon system

 p_T resolution varies from 4% (for 10 GeV) to 10%(for 1 TeV) as a function of p_T

- Measure muon momentum in $|\eta| < 2.7$
- Magnet system: barrel and end-cap toroid magents
- Monitored drift tubes (MDT):
 - consist of three to eight layers of drift tubes
 - cover $|\eta| < 2.7$ range
 - $|\eta| < 2.0$ for innermost end-cap
- Cathode strip chambers (CSC):
 - proportional chambers with cathode planes segmented into strips
 - cover 2.0 < $|\eta|$ < 2.7
- Trigger chambers:
 - barrel ($|\eta| < 1.05$) Resistive Plate chambers (RPC)
 - end-cap $(1.05 < |\eta| < 2.4)$ Thin
 - Gap Chambers (TGC)

Signal and Background

Signal samples

Signal samples: W', W* - generated for different mass points

W'/W* mass [GeV]	W' σB [pb]	W* σB [pb]
150	1299.7	-
200	494.65	-
300	107.53	-
400	36.47	32.834
500	15.12	13.612
600	7.287	-
750	2.843	2.4309
1000	0.7659	0.61184
1250	0.2451	0.18194
1500	0.08777	0.059298
1750	0.0337	0.020278
2000	0.01326	0.0071366
2250	0.00605	0.0025477
2500	0.00289	0.00091657
2750	0.001559	0.00033089
3000	0.000872	0.00012051
3500	0.000388	-

Background

- $W \rightarrow Iv$ most dominant and irreducible
- $\blacksquare Z \rightarrow II$ when one lepton is not reconstructed
- Dibosons (WW, WZ, ZZ)
- ttbar
- single t
- Wγ
- QCD (estimated from data)

For W background along with bulk samples also mass and p_T binned samples are used to cover statistic in high m_T and hight p_T respectively. Relevant truth mass and truth p_T filters are applied.

Sample	σB [pb]
W→Iv	8938
Z→II	856
WW	11.49
WZ	3.481
ZZ	0.976
ttbar	80.2
single t	14.6 - 0.47
Wγ	72.87

200 GeV

Mт

k-Factors

- Mass dependent k-Factors for NNLO were obtained
- k-Factors include EW corrections
- Polynomial fit was applied
- Uncertainties were evaluated
- Should be applied separately for W⁺ and W⁻
- Applied as event weight

Event selection

- Good Runs (luminosity blocks): all significant parts detector were working properly ~4.7 fb⁻¹
- Primary vertex: at least 3 tracks, |z|<200 mm</p>
- Jet Cleaning: to avoid events with spurious MET, events are rejected if they have a bad jet with $E_T > 20$ GeV

Electron channel selection

- Trigger: EF_g80_loose (EF_e20_medium)
- Author electron 1 or 3
- |η^{cluster}|<2.47 (excluding crack: 1.37< |η^{cluster}|<1.52)</p>
- E_T > 85 GeV (25 GeV)
- Medium electron
- Blayer if expected
- Object Quality (OQ)
- LAr noise suppression (reject if LAr Error >1)
- |d₀^{PV}|<1 mm & |z₀^{PV}|<5 mm
- Trigger match ($\Delta R < 0.15$) $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
- Exactly 1 electron
- Calo Isolation: Etcone40(corrected) < 9 GeV</p>
- MET > 85 GeV (25 GeV)
- MET/ET > 0.6 cut was dropped. It was used in previous analysis to suppress QCD. Now it is not needed due to high E_T and MET thresholds

Muon channel selection

Trigger:

- EF_mu22 || EF_mu22_MG || EF_mu40_MSonly_barrel (before period J)
- EF_mu22_medium || EF_mu22_MG_medium || EF_mu40_MSonly_barrel_medium (after period J)
- STACO combined
- p_T>25 GeV
- MCP ID hits requirements
- |d₀^{PV}|<0.2 mm & |z₀^{PV}|<1 mm
- Exactly one muon
- MS hits:
 - N^{MDT} hits > 2 for all three barrel stations
 - $N_{\phi}^{\text{RPC/TGC}}$ hits> 1 for at least two stations
 - No misaligned chambers (BEE, EE, BIS78)
 - No Barrel-Endcap overlap
 - No CSC hits (|η| < 2.0)
- Trigger match (ΔR<0.10)

■ Isolation:
$$Σp_T^{ΔR<0.3}/p_T^{µ} < 0.05$$

- MET > 25 GeV
- $|S(q/p)| = |\delta(q/p)/\sigma(\delta(q/p))| < 5.0$

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \varphi^2}$$

QCD background estimate

Data-driven QCD estimate

- Event which has one jet which fakes lepton or real lepton from a heavy flavor quark decay and other jet is mismeasured faking MET
- Methods to estimate QCD in the electron channel:
 - ABCD
 - Calorimeter isolation template
 - Inverted electron identification
 - Matrix method
- Methods to estimate QCD in the muon channel:
 - Matrix method
 - Inverted isolation

QCD estimate (electron channel)

Inverted electron identification <u>(loose</u>' but not 'medium'

Calorimeter isolation template

Matrix method

'tight' – W' electron selection 'loose' – B-layer cut was removed

$$\varepsilon_{\text{real}} = \frac{N_{\text{tight}}^{\text{real}}}{N_{\text{loose}}^{\text{real}}} \quad \text{and} \quad \varepsilon_{\text{fake}} = \frac{N_{\text{tight}}^{\text{fake}}}{N_{\text{loose}}^{\text{fake}}}$$

$$N_{\text{tight}}^{\text{fake}} = \frac{\varepsilon_{\text{fake}}}{\varepsilon_{\text{real}} - \varepsilon_{\text{fake}}} \left(\varepsilon_{\text{real}} N_{\text{loose}} - N_{\text{tight}} \right)$$

QCD estimate (electron channel)

Power law fit:

 $y = p_0 \cdot x^{p_1}$

Dijet fit:

$$y = p_1 \cdot (1 - x)^{p_2} \cdot x^{p_3 + p_4 \ln x}$$

Results with 2011 data

2011 published results (I)

Conf note was written in summer 2011 (for PLCH, Perugia, 6-11 June) with 205 pb⁻¹

 Paper was shown in EPS (Grenoble, 21-27 June) and was published in PLB with 1 fb⁻¹ integrated luminosity [Phys.Lett. B705 (2011) 28-46]

2011 published results (II)

- No significant excess was observed
- Limit was set to 2.15 TeV

Yield plots

p_T and MET distributions

η and ϕ distributions

m_T distributions

Highest m_T event (electrons)

Highest m_T event (muons)

W' and W* Limits

Observed limit: 2.53 TeV

Observed limit: 2.45 TeV

Summary

- PNPI group plays one of main roles in W'->ev analysis
- Conf note was written in summer 2011 (for PLCH, Perugia, 6-11 June) with 205 pb⁻¹
- Paper was written for EPS (Grenoble, 21-27 June) and was published in PLB with 1 fb⁻¹ integrated luminosity [Phys.Lett. B705 (2011) 28-46]
- Backup Note should be finished by the end of March
- Goal is for publication with full 2011 data 4.7 fb⁻¹ (PLB)

Backup

QCD estimate (muon channel)

350

Inverted isolation

 $0.2 < p_T^{\Delta R < 0.3}/p_T^{\mu} < 0.4$

Matrix method

'tight' – W' muon selection 'loose' - Isolation cut was removed

Systematics

Background MC X-sections and shape uncert. (K-Factors)

Electrons:

- Energy scale and resolution (e/gamma recommendations)
- Medium, Blayer, isolation scale factors (produced by Z' group)
- Trigger scale factors were evaluated for EF_g80_loose trigger

Muons:

- Momentum resolution and curvature offset (MCP recommendations)
- Trigger and Reco efficiency scale factors were produced

• MET:

- smear by 4.0 GeV or use JET/ETMiss Systematics
- only one configuration of MET systematics will be chosen
- MET smearing to be applied to the non-leptonic part of the MET

W' and W* Limits

Семинар ОФВЭ, Соловьев В.

Limit setting

Use Bayes analysis for limit setting

Using Bayes theorem posterior probability is determined from likelihood.
Prior probability chosen to be one:

$$P_{\text{post}}(\sigma B) = N \mathcal{L}_B(\sigma B) P_{\text{prior}}(\sigma B)$$

• A discriminant is constructed and p-value is determined as a fraction of trials for which the background only hypothesis will give equal or exceeds the observed value:

$$B_{\rm disc} = \max(P_{\rm post})/P_{\rm post}(0)$$

• 95% CL on σB is obtained by finding the value of σB for which p-value = 0.05 (i.e. $CL_{bayes} = 0.95$):

$$CL_{\text{bayes}} = \int_0^{\sigma B} P_{\text{post}}(x) dx$$