Применение быстрых сцинтилляторов в позитронно-эмиссионной томографии

С.В.Косьяненко Петербургский институт ядерной физики 31 Января 2012 г.

План:

Введение в ПЭТ

ПЭТ с временным каналом

Исследование быстрых сцинтилляторов

Новые перспективы ПЭТ

Заключение

Введение в ПЭТ

1: Инъекция радиоактивного медикамента

- Медикамент помечен позитронным (β+) радионуклидом.
- Эквивалентная доза облучения 5-7 мЗв.

Например:

- Естественное фоновое ионизирующее излучение в среднем за год равно 2,4 мЗв.
- Для персонала атомной электростанции доза облучения за год не должна превышать 50 мЗв

Применяемые радионуклиды

- Легко внедряются в активный медикамент
- Время жизни около 2-х часов
- Легко производятся.

F время жизни 110 мин. IC, 13N время жизни 2, 20, 10 мин. время жизни 75 сек

2: Детектирование радиоактивного распада

- Радионуклид распадается через β+.
- β+ аннигилирует с е– в ткани с испусканием в
 противоположные стороны фотонных пар с энергией каждого фотона 511 кэВ,
 которые регистрируются детекторами.
- Место нахождения позитрона определяется парой детекторов (хордой).

Актуальные сцинтилляторы для ПЭТ

Свойства	NaI(Tl)	BGO	LSO	YSO	GSO	BaF2	LaBr3	LYSO	
Плотность, г/см3	3,67	7,13	7,4	4,53	6,71	4,89	5,3	5,31	
Эффективное Z	50,6	74,2	65,5	34,2	58,6	52,2	46,9	54	
Длина поглощения, см	2,88	1,05	1,16	2,58	1,43	2,2	2,1	2	
Постоянная высвечивания, нс	230	300	40	70	60	0,6	15	53	
Световой выход, фот/кэВ	38	6	29	46	10	2	61	29	
Относительный световой выход, %	100	15	75	118	25	5	160	76	
Длина волны, нм	410	480	420	420	440	220	360	420	
Коэффициент преломления	1,85	2,15	1,82	1,8	1,91	1,56	1,9	1,81	
Энергетическое разрешение ΔЕ/Е, %	6,6	10,2	10	12,5	8,5	11,4	3	10	
Гигроскопичность	Да	Нет	Нет	Нет	Нет	Нет	Да	Нет	

BGO – Bi4Ge3O12, LSO – Lu2SiO5(Ce) YSO – Y2SiO5(Ce) GSO – Gd2SiO5(Ce) LYSO – Lu1.8Y0.2SiO5(Ce)

Реконструкция объекта получается после реконструкции всех 1-мерных проекций 2-мерного объекта

Коррекция ослабления

Из-за ослабления может «потеряться» от 50 % до 95% всех полезных событий

В ПЭТ используют карту разности плотностей всего исследуемого тела, которую применяют для коррекции ослабления.

- Используется внешний позитронный источник.
- Источник вращается вогруг пациента для измерения всех хорд.

В современной ПЭТ для коррекции ослабления используют КТ или МРТ

ПЭТ без коррекции ослабления ПЭТ с коррекцией ослабления Компьютерная томография

ПЭТ с временным каналом

А: Времяпролётная ПЭТ

- Локализация источника вдоль хорды.
- Улучшение соотношения сигнала к шуму (ССШ, SNR).

Достигнутое временное разрешение для двух LSO составляет 300 пс → 5 см (dX). При размере объекта D=40 см, шум уменьшается в 3-и раза.

Источник распада может находится в любом месте хорды

Источник локализуется на хорде в соответствии с временным разрешением

Если временное разрешение составит ~ 15 пс, то место аннигиляции позитрона и электрона будет определенно с точностью ~2,5 мм и не будет требоваться восстановления изображения. (Изображение из University of Tubingen.)

Изображения ПЭТ без ВП и с ВП CT non-TOF TOF

ВП ПЭТ изображение, полученное с помощью Phillips Gemini TOF PET сканера при временном разрешении 600 пс. (Фото Philips Medical Systems.)

- Диаметр сканера ~60 см.
- От 24 до 48 слоёв, покрывает 15 см вдоль оси.
- 4–5 мм fwhm пространственное разрешение.
- ~2% угловой захват.
- Стоимость \$1 \$2 миллиона.

Images courtesy of GE Medical Systems and Siemens / CTI PET Systems

Блоки сцинтилляторов

А. Ранее использовались ВGO блоки 6x6x30 мм3 в матрице 8x8.

Photo of Siemens Medical Solutions

В. Современный ПЭТ сканер содержит LSO блоки 4x4x35 мм3 в матрице 13x13.

Фундаментальные ограничения пространственного разрешения

Размер сцинтилля тора	Логика Anger	Пробег позитрона	Неколлинеарность гамма квантов
d/2	2.2 мм	F18 (FDG)-1. 4	180±0.50

 Пространственно разрешение ухудшается по мере удаления хорды от диаметра.

 Данный «вредный» эффект может быть удалён за счёт измерения глубины остановки гамма кванта (DOI).

Коррекция параллакса происходит за счёт использования двух сцинтилляторов с отличающимися временами высвечивания

http://www.bioscan.com/molecular-imaging/biopet-ct

Рассеяние Комптона

- Комптоновское рассеяние возникает в пациенте.
 Рассеянные гамма кванты создают фон.
 - Фон уменьшается с улучшением амплитудного разрешения детектора.

Исследование быстрых сцинтилляторов

Техническое обеспечение

Спектрофотометр на длины волн 185-1000 нм.

Установка для исследования спектров рентгенолюминесценции в диапазоне 185-1000 нм.

Установка для изучения кинетики люминесценции.

Установка для измерения малых временных интервалов > 50 пс.

Спектрофотометр 185-1000 нм.

Создана установка для исследования спектров рентгенолюминесценции в диапазоне 185-1000 нм.

Установка для изучения кинетики люминесценции

Спектрометр **180-1000** нм. (+) Найден разработчик импульсного рентгеновского излучателя с энергией **10-100** кэВ и длительностью импульса ~1 нс. (-) Быстрый осциллограф **4** ГГц. (+)

Установка для измерения малых временных интервалов > 50 пс

Стандартная методика

PMT with TTS 150 ps.	(+)
TDC	(-)
CFD	(-)
Amplifier	(-)
Soft	(-)
Альтернативная методика	
PMT with TTS 150 ps.	(+)
Digitizer 2 ch, 4 GHz	(-)
Amplifier	(-)
Soft	(-)

Новые перспективы ПЭТ

Коррекция параллакса

Для определения точки остановки гамма кванта в сцинтилляторе перспективно применять нейронные сети или другие обучающиеся многопараметрические методы

NDIP -20 June 2008, Ruud Vinke

Заключение

Создать комплекс оборудования для исследования спектральных и временных характеристик сцинтилляторов.

Создать временной канал для измерения временного разрешения испытуемых образцов.

Развить времяпролётную методику.

Расширить объём изучаемых образцов М 1-х Rx F 2+х (M=Sr, Cd, Pb, Hg; Rредкие земли, Al, Ga, In, Tl, Bi) и др. сцинтилляторы. Создать прототип ВП ПЭТ.

- 1. NIM Phys Res A 2009 Vol 610 Issue 1 p 335-337
- 2. Optical Materials 2010 vol 32 p 1291-1293
- 3. Bulletin of the RAS. Physics 2011 vol 75 № 7 pp 1011-1014
- 4. Физика твердого тела 2010 том 52 вып 9 с 1780-1784
- 5. NIM Phys Res A doi:10.1016/j.nima.2011.11.080.