Resistive Plate Chamber (RPC) for TOF measurements

- Физические процессы
- газовые смеси
- конструкция
- ОСНОВНЫЕ ХАРАКТЕРИСТИКИ (временное

разрешение, загрузки, эффективность..)

- старение
- R3B

Resistive Plate Chambers

 $\rho \sim 10^{10} - 10^{13} \,\Omega^* \text{cm}$

Вихров В.В.

Первичная ионизация

Вихров В.В.

$$N(t) = N_0 e^{(\alpha - \eta) \upsilon \circ t}$$

 N_0 - Число электронов в кластере

- α Townsend коэффициент
- η attachment коэффициент
- *U* скорость дрейфа

Вихров В.В.

Скорость дрейфа

0.3mm Timing RPCs, 100 kV/cm: $U = 210 \ \mu m/ns$

Вихров В.В.

Вихров В.В.

Индуцированный сигнал

$$i(t) = \frac{\varepsilon_r}{2b + d\varepsilon_r} \upsilon q_e N_e(t)$$

- *Е*_{*r*} диэлектрическая проницаемость стекла
 - b толщина стекла
 - d величина газового зазора

Вихров В.В.

Газовая смесь

FS6 contamination

Вихров В.В.

Gap width

Оптимальный зазор -220-250 µm

Вихров В.В.

STAR-type CBM prototype MRPC

Вихров В.В.

STAR-type CBM prototype MRPC

- **Glass:** \sim 4×10¹² Ω .cm
- **Gas gap:** 6×0.22 mm
- Working gas: 95% F134a+5% iso-butane
- □ Time resolution: ~70ps
- **Efficiency >95%**
- Rates capability: <500Hz/cm2</p>
- \rightarrow noise < 30 Hz/channel (pad 20cm²)
- → dark current < 7 nA/module (140cm²) was measured.

Вихров В.В.

ADC-TDC correction

Вихров В.В.

Hit dependence

Time – hit position

Вихров В.В.

CBM prototype (High rate MRPC)

Вихров В.В.

Performance of high rate MRPC

Efficiency and time resolution as a function of high voltage at a rate of about 800Hz/cm²

When the particle flux increases every 5 kHz/cm², the efficiency decreases by 1% and the time resolution deteriorates by 4 ps.

Вихров В.В.

Rates capability

Вихров В.В.

ALICE TOF

Необходимо перекрытие

Вихров В.В.

Boundaries potential problem (loss in efficiency, double hits) ~ 10 km of boundary for 160 m² detector ~ 30 % of area ± 2.5 mm to a boundary

Вихров В.В.

В результате старения:

- увеличение темнового тока
- уменьшение эффективности
- отложения на поверхности стекол

690 дней при 300 Hz/cm² ⁶⁰Со, совокупный заряд

темновой ток -не увеличился на стекле – отложения из различных сочетаний ядер

Вихров В.В.

MRPCs used in hadron experiment

Detector	HARP	ALICE	STAR	FOPI	HADES
N_{gaps}	4	10	6	6	4
gap size [mm]	0.3	0.25	0.22	0.3	0.3
$\mathrm{gas}[\mathrm{C_2F_4H_2}/\mathrm{SF_6}/\mathrm{C_4H_{10}}]$	90/5/5	90/5/5	95/0/5	85/10/5	98.5/1/0.5
electric configuration	cat-an-cat	cat-an-cat	an-cat	cat-an-cat	cat-an-cat
cell size $[cm \times cm]$	22×10.6	2.5×3.7	6.3 imes 3.1	90×0.34	60×2
detector size	10 m^2	150 m^2	60 m^2	5 m^2	8 m^2
N _{channels}	368	160000	$\simeq 30000$	5000	$\simeq 2100$
HV/gap	3.0 kV	2.4 kV	2.35 kV	3.3 kV	3.2 kV
ε	99%	99.9%	95 - 97%	$97 \pm 3\%$	>95%
plateau length	300 V	2000 V	500 V	600 V	$\gtrsim 200 \text{ V}$
σ_T	-	$90 \mathrm{\ ps}$	120 ps	-	100 ps
σ_T (after slewing corr.)	150 ps	40 ps	$60 \mathrm{\ ps}$	$73 \pm 5 \text{ ps}$	$70 \mathrm{\ ps}$
cross-talk/neighbor	< 10%	-	-	-	< 0.5%
3- σ tails	-	-	-	< 2%	6%
space resolution $[\rm cm^2]$	-	-	-	-	0.6×0.6
experiment rates	1 Hz/cm^2	$50 \ \mathrm{Hz/cm^2}$	$10 \ \mathrm{Hz/cm^2}$	$50 \ \mathrm{Hz/cm^2}$	$700~{ m Hz/cm^2}$
dark rate $[Hz/cm^2]$	< 0.1	-	< 0.3	< 1	2 - 3
rate capability $[Hz/cm^2]$	≤ 2000	≤ 1000	-	-	350
$\rho d \left[10^{12} \ \Omega \times \mathrm{cm}^2 \right]$	10×0.105	- × 0.04	5×0.055	$- \times 0.15$	5×0.1
\bar{q}	-	2 pC	-	-	-
\bar{q}_{prompt}	_	-	_	_	$0.7 \ \mathrm{pC}$
material budget (x/X_o)	-	-	-	-	12-24%
resistive material	float glass	float glass	float glass	float glass	float glass

Вихров В.В.

NewLAND detector

Time Resolution Position Resolution Excitation Energy Resolution x,y – Same Size as LAND z – Length Neutron Efficiency < 100 ps ~ 1 cm ~ 100 keV 2 m x 2 m < 1 m > 90% for 1-n hits

Вихров В.В.

The NeuLAND MRPC prototypes, some details

butane