

PANDA experiment status

С.Белостоцкий

ОФВЭ, 26 марта 2013

Accelerator facilities and experiments @GSI

FAIR Facility for Antiproton and Ion Research

Experiments

M1: APPA M1: CBM/HADES M2: NuSTAR M3: PANDA

Important contribution

- 526 M€ German contribution to civil construction
 - largest BMBF grant ever
 - approved in July 2014

FAIR operation cost 118 M€per year

Roadmap Civil Construction

		2012	2013	2014	2015	2016	2017	2018
Ground Exploration		$\rangle \sum$						
Forest Clearing	\geq	, ,						
Site Preparation		Σ			>			
Earthwork and Foundation			\sum					
Batch 1 (Civil Engineering)								
Batch 2 (M&E)								
Trans-Batch Works								\blacklozenge
Construction Finished \rightarrow Experiments								

The High Energy Storage Ring HESR

M. Steck. FAIR-GSI Antiproton Source Meeting. Ferrara. 15-16 December 2006

Main HESR parameters

Experimental Requirements					
Ion species	Antiprotons				
$\overline{\mathbf{p}}$ production rate	$2 \cdot 10^7 \text{ /s} (1.2 \cdot 10^{10} \text{ per } 10 \text{ min})$				
Momentum / Kinetic energy range	1.5 to 15 GeV/c / 0.83 to 14.1 GeV				
Number of particles	10^{10} to 10^{11}				
Target thickness	$4 \cdot 10^{15} \text{ atoms/cm}^2 (\text{H}_2 \text{ pellets})$				
Transverse emittance	$< 1 \text{ mm} \cdot \text{mrad}$				
Betatron amplitude E-Cooler	$25-200\mathrm{m}$				
Betatron amplitude at IP	$1 - 15 \mathrm{m}$				
	Operation Modes				
High resolution (HR)	Luminosity of $2 \cdot 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ for $10^{10} \overline{\text{p}}$				
	rms momentum spread $\sigma_p/p \le 2 \cdot 10^{-5}$,				
	1.5 to 9 GeV/c, electron cooling up to 9 GeV/c				
High luminosity (HL)	Luminosity of $2 \cdot 10^{32}$ cm ⁻² s ⁻¹ for 10^{11} p				
. /	rms momentum spread $\sigma_p/p \sim 10^{-4}$,				
	1.5 to 15 GeV/c, stochastic cooling above 3.8 GeV/c				

Invariant mass
$$M(p\bar{p})=m_p\sqrt{2(1+\gamma_p)}\gamma_p=\frac{E_p}{m_p}$$
 (2.25 < $M(p\bar{p})$ < 5.46 GeV

PANDA detector

- 100 KeV mass resolution by beam momentum scan
- □1% produced particle momentum resolution
- □ 2x10⁷ s⁻¹ event rate capability

□stand 10³² cm⁻² s⁻¹ inst. luminosity

 $\Box nearly 4\pi acceptance,$ high detection efficiency

Secondary vertex reconstruction for D, $K^0_{S'} \Lambda$ (c τ = 317 µm for D[±])

□PID (γ, e, μ, π, K, p)

□photon detection 1 MeV – 10 GeV

□beam deflection 2.2deg.

Figure 2.1: Artistic view of the $\overline{P}ANDA$ Detector Targets: pellet H(D) target

frozen drops of 25-40µm, controlled position; Target station for hyper-nucleus physics; Wire targets for pbar-A interaction He3 polarized target (under design)

Total integrated luminosity about 1.5 fb⁻¹ /6 months with 50% run efficiency

PANDA Collaboration

(AntiProton ANnihilation at DArmstadt) more than 500 participants from 8 Europian countries (Germany, Russia, Italy,France,...) and from China, India, USA

PANDA main documents

Public Letter of Intent 2004Letter of Intent 2004Public Technical progressreport 2005Full Technical progressreport 2005Physics PerformanceReport 2009

TDRs

EMC Technical Design Report" Magnets Technical Design Report Micro Vertex Detector Technical Design Report Straw Tube Tracker Technical Design Report Targets Technical Design Report Muon Detectors Technical Design Report

Expected 16 more

PANDA Physics

Hadron spectroscopy in the region of charm quarks. High mass/width resolution measurements

Further exploration of recently found X,Y,Z (CCbar like) states. Search for exotic states like hybrids, glueballs, multiquarks

Study of properties of hadrons inside nuclear matter. Mass and width modifications also in charm region

□ Study of proton structure – time-like form factors.

Study of GPDs in time-like Hand Bag approach

 $pp \rightarrow cc$ states

 $\stackrel{-}{\infty} \rightarrow J / \Psi \pi^+ \pi^-, J / \Psi \gamma$

- □ Pertubative and non-pertubative dynamics in hyperon production including spin. Direct CP violation in hyperon decay. $pp \rightarrow \overline{Y}Y$ $Y = \Lambda, \Sigma, \Xi, ... \Lambda_c ... \Omega_c$ $\alpha_{\Lambda} \neq -\alpha_{\overline{\Lambda}}$
- □ ∧∧ hypernucleus

Colliders and experiments active in hadron, C and B physics

Pbar P fixed-target @FNAL E835 (recently shutdown)

Charm (C Cbar) physics. Hybrids, gluons.

Belle KEKB electron-positron collider X(3872)

Assumed to be CCbar state, however X(3872) structure is not understood till now: 4-quark, DDbar molecule, change color force structure...

The XYZ States, more not understood...

Over past few years a wealth of new states has been discovered, mostly at the B-factories, in the region above open charm threshold. These states are usually associated to charmonium, because they decay into charmonium, but their nature is not at all understood.

CCbar states predicted and observed

		X(3872)	0?(??+)	Table 3.6: Predicted and observed masses of $c\bar{c}$ states (in MeV).								
c	c	X(3915)	0+(??+)		State	Expt	GI85	EQ94	FU91	GJ96	EFG03	ZVR95
	IG(JPC)	~ (2 P)	0+(2++)		. 9	_	[171]	[196]	[175]	[179]	[173]	[180]
n (18)	0+00-+	λc2(2F)	0(2)	$J/\Psi(1S)$	$1^{3}S_{1}$	3096.87 ± 0.04	3098	3097	3104	3097	3096	3100
1 _C (15)	0(0)	X(3940)	2?(2??)	$\eta_{c}(1S)$	$1^{1}S_{0}$	2979.8 ± 1.8	2975	2980	2987	2979	2979	3000
J/ψ(1S)	0-(1)		. (.)	$\chi_{c3}(1P)$	$1^{3}P_{2}$	3556.18 ± 0.13	3550	3507	3557	3557	3556	3540
		ψ(4040)	0-(1)	$\chi_{c2}(1P)$	$1^{3}P_{1}$	3510.51 ± 0.12	3510	3486	3513	3511	3510	3500
$\chi_{c0}(1P)$	0 ⁺ (0 ⁺⁺)		<u>, , ,</u>	$\chi_{c0}(1P)$	$1^{3}P_{0}$	$341\overline{5.0}\pm0.8$	3445	3436	3404	3415	3424	3440
	0+(1++)	$X(4050)^{\pm}$?(??)	h(1P)	$1^{1}P_{1}$		3517	3493	3529	3526	3526	3510
$\chi_{c1}(IP)$	0(1)	V(4140)	a± 122±	$\Psi(2S)$	$2^{3}S_{1}$	3685.96 ± 0.09	3676	3686	3670	3686	3686	3730
h.(1P)	??(1+-)	X(4140)	0"(?:")	$\eta_{c}(2S)$	2^1S_0	3654 ± 10	3623	3608	3584	3618	3588	3670
	at/att	. w(4160)	0-(1)		$1^{3}D_{3}$		3849		3884		3815	3830
$\chi_{c2}(1P)$	0.(5)		v(1)	DDbar	$1^{3}D_{2}$		3838		3871		3813	3820
n.(2S)	0+(0-+)	X(4160)	??(???)	Thresold	$1^{3}D_{1}$	3769.9 ± 2.5	3819		3840		3798	3800
10(200)	- (- /			2720.7	1^1D_2		3837		3872		3811	3820
ψ(2S)	0-(1)	X(4250) [±]	?(?')	5729.7	$2^{3}P_{2}$		3979				3972	4020
w(3770)	0-/1>	V(4260)	2.4.00	Mev	$2^{3}P_{1}$		3953				3929	3990
φ(5770)	0(1)	A(4200)	? (1)		$2^{3}P_{0}$		3916				3854	3940
		X(4350)	0+(2?+)		$2^{1}P_{1}$		3956				3945	3990
			V(;)		$3^{3}S_{1}$		4100				4088	4180
					3^1S_0		4064				3991	4130

Hybrid and glueball states

Long lived gluon excitation: q qbar gluon system. Presence of gluon changes quantum numbers to exotic ones, i.e., those excluded for "standard" qqbar meson system. Glueballs are pure gluon exitation

production mechanism in p pba anihilation

Σ

Charm hybrid gCCbar

predictions based on quark bag model, LQCD

hybrids with both exotic	(a)	$m(c\bar{c}g), 1^{-+}$	Group	Ref.
TDC 0+- 1-+ 0+-		$4390 \pm 80 \pm 200$	MILC97	[59]
$J^{r} = 0^{r}, 1^{r}, 2^{r}$		4317 ± 150	MILC99	[60]
and		4 287	JKM99	[61]
		$4369 \pm 37 \pm 99$	ZSU02	[62]
non – exotic				
$J^{pc} = 0^{-+}, 1^{+-}, 2^{-+}$	(b)	$m(c\overline{c}g,1^{-+})-m(c\overline{c},1^{})$	Group	Ref.
quantum numbers		$1340\pm80\pm200$	MILC97	[59]
quantum numbers		1220 ± 150	MILC99	[60]
expected		1323 ± 130	CP-PACS99	[63]
		1 1 9 0	JKM99	[61]
		$1302{\pm}37{\pm}99$	ZSU02	[62]

Expected to be as narrow (or narrower) as CCbar states, high energy resolution of HESR is important (!)

Latice QCD prediction for glueball states

Charmonium/exotic states at PANDA

- At 2×10³²cm⁻²s⁻¹ accumulate 8 pb⁻¹/day (assuming 50 % overall efficiency) ⇒ 10⁴÷10⁷ (CCbar states/day). Total integrated luminosity 1.5 fb⁻¹/year (at 2×10³²cm⁻²s⁻¹, assuming 6 months/year data taking).
- Improvements with respect to Fermilab E760/E835:
 - Up to ten times higher instantaneous luminosity.
 - Better beam momentum resolution $\Delta p/p = 10^{-5}$ (GSI) vs 2×10⁻⁴ (FNAL)
 - Better detector (higher angular coverage, magnetic field, ability to detect hadronic decay modes). Fine scans to measure masses to \approx 100 KeV, widths to \approx 10 %.
- Explore entire region below and above open charm threshold. Decay channels $J/\psi+X$, $J/\psi \rightarrow e^+e^-$, $J/\psi \rightarrow \mu^+\mu^-$, $\gamma\gamma$, hadrons, D D
- High statistics/high mass resolution study of exotic states

Main competitors: Belle II, LHCb

Time-like Form Factors. Hand Bag diagram.

Space-like and Time –like (TL) FF

 $\frac{\mu_{\rm p}G_{\rm E}^2({\rm Q}^2)}{G_{\rm e}^2({\rm Q}^2)} \neq 1$

k_e q k_p k_p

$$m_{\gamma}^{2} = q^{2} = \left(k_{e^{+}} + k_{e^{-}}\right)^{2} = \left(k_{p} + k_{\overline{p}}\right)^{2},$$

In CM frame $q^{2} = 4k^{2} = -Q^{2}$

Both SLFF and TLFF problem of

(OLYMPUS, VEPP3, JLAB)

TLFF still poorly studied at $q^2 > 10 \text{GeV}^2$

SLFF/ TLFF->1 in the limit of pQCD $(Q^2 \gg 1 \text{ GeV}^2)$

Expected from PANDA

Study of Generalized Parton Distributions GPDs

Space-like Hand Bag diagram

Hyperon physics. CP violation.

Hyperon physics at Panda

Octet members

$$\overline{pp} \rightarrow \overline{Y}Y \ Y = \Lambda, \Sigma, \Xi, ...\Lambda_{c}...\Omega_{c}$$

Reaction mechanism, Ozi rule violation, Polarization and spin-correlations

 $\overline{p}p \rightarrow \overline{Y}Y^*$

S and C(?) hyperon spectroscopy

Singlets

A(1116)	$\Sigma(1193)$	$\Xi(1318)$	
A(1600)	$\Sigma(1660)$	$\Xi(?)$	
A(1670)	$\Sigma(1620)$	$\Xi(?)$	A(1405)
$\Lambda(1690)$	$\Sigma(1670)$	$\Xi(1820)$	A(1520)
$\Lambda(1800)$	$\Sigma(1750)$	$\Xi(?)$	
$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$\Lambda(1830)$	$\Sigma(1775)$	$\Xi(?)$	
A(1810)	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(?)$
$\Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	
A(1820)	$\varSigma(1915)$	$\varXi(2030)$	
$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	A(2100)
$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
A(2350)	$\Sigma(?)$	$\Xi(?)$	

3/2	<i>∆</i> (1232)	$\Sigma(1385)$	$\Xi(1530)$	$\Omega(1672)$
3/2	$\Delta(1600)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
1/2	$\Delta(1620)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
1/2	$\Delta(1700)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
3/2	$\Delta(1905)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$
3/2	$\Delta(1950)$	$\Sigma(2030)$	$\Xi(?)$	$\Omega(?)$
3/2	$\Delta(2420)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$

Decuplet members

$pp \rightarrow \overline{Y}Y$ reaction mechanism

Differential cross sections and polarization with unprecedented precision

$pp \rightarrow \overline{Y}Y$ polarization

CP violation

CP preserves $\alpha_{Y} = -\alpha_{\overline{Y}}$ $\Gamma_{Y} = \Gamma_{\overline{Y}}$ direct CP violation $A = \frac{\alpha_{Y}\Gamma_{Y} + \alpha_{\overline{Y}}\Gamma_{\overline{Y}}}{\alpha_{Y}\Gamma_{Y} - \alpha_{\overline{Y}}\Gamma_{\overline{Y}}} \approx \frac{\alpha_{Y} + \alpha_{\overline{Y}}}{\alpha_{Y} - \alpha_{\overline{Y}}} \approx 2 \cdot 10^{-5}$ according to SM

Some models beyond SM predict $A \sim 2 \cdot 10^{-4}$

Russia and PNPI in PANDA.

Russia in PANDA

Russian in-kind contribution to PANDA detector 23 M (CBM 22M) Germany in-kind contribution to PANDA detector 21 M (CBM 25M) of total investment of 69 M

PANDA [WBS 1.3] Work Packages

part of the [1.0 Experiments] FAIR Work Packages

Total PANDA detector cost is 65.8 M Euro based on 2005 cost book numbers.

Total sum out of 2005 cost book for requested "Russian in-kind contribution" is 22. 988 M Euro Summing request of all Russian institutions in PANDA to Rosatom is 27. 55 M Euro.

	WBS1.3.1	WBS 1.3.2	WBS	WBS	WBS	WBS	WBS	WBS	WBS	WBS	Sum
	Forward	Barrel	1.3.3	1.3.4	1.3.5	1.3.6	1.3.7	1.3.8	1.3.9	1.3.10	
	EMC	EMC	Forward	Muon	DIRC	Sole-	For-	Pellet	Li-	Barrel	
	(without	(without	MVD	De-	radia-	noid	ward	Target	cenced	TOF	
	electron-	photodetec-	(without	tector	tors	Magnet	TOF		Soft-		
	ics)	tors and	electron-			iron			ware		
		electronics)	ics)			yoke					
Cost Book numbers,	1.36	14.268	1.30	2.25	1.00	1.00	0.45	0.70	0.31	0.35	22.988
M Euro											
Requested funds	2.23	14.268	1.30	2.72	1.83	1.39	0.88	1.60	0.31	1.02	27.55
(in 2005 costs)											
Requested/CostBook, %	<i>162</i>	100	100	121	183	139	198	229	100	291	<i>120</i>

Из обшей суммы российского вклада 178 М на эксперименты 10% (18 М)

ПИЯФ в эксперименте ПАНДА

Соттеритерии Сонтранты РФФИ (Study of the scintillation detector ...)

Участники

Д.Веретенниковразработка/испытания прототипаК.СуворовВ.Вихров (?)TOF wall design, count ratesК.БайбизГ. ГавриловSiPM, agingH.ЕвсеевА.Изотовразработка/испытания прототипаА.Кащукfrontend electronicsА.Киселев(?)startless TOF formalismП.Кравченко(?)MC study light yield, time resolutionО.ЛевицкаяMC studies/hyperon productionО.Миклухоразработка/испытания прототипаК.СуворовМС studies/hyperon production	С. Белостоцкий	координация	Студенты ВГУ
В.Вихров (?)TOF wall design, count ratesК.БайбизГ. ГавриловSiPM, agingН.ЕвсеевА.Изотовразработка/испытания прототипаА.Кащукfrontend electronicsА.Киселев(?)startless TOF formalismП.Кравченко(?)MC study light yield, time resolutionО.ЛевицкаяMC studies/hyperon productionО.Миклухоразработка/испытания прототипаЮ.НарышкинMC studies/hyperon production	Д.Веретенников	разработка/испытания прототипа	К.Суворов
Г. ГавриловSiPM, agingН.ЕвсеевА.Изотовразработка/испытания прототипа	В.Вихров (?)	TOF wall design, count rates	К.Байбиз
А.Изотовразработка/испытания прототипаА.Кащукfrontend electronicsА.Киселев(?)startless TOF formalismП.Кравченко(?)MC study light yield, time resolutionО.ЛевицкаяMC studies/hyperon productionО.Миклухоразработка/испытания прототипаЮ.НарышкинMC studies/hyperon production	Г. Гаврилов	SiPM, aging	Н.Евсеев
А.Кащукfrontend electronicsА.Киселев(?)startless TOF formalismП.Кравченко(?)MC study light yield, time resolutionО.ЛевицкаяMC studies/hyperon productionО.Миклухоразработка/испытания прототипаЮ.НарышкинMC studies/hyperon production	А.Изотов	разработка/испытания прототипа	
А.Киселев(?)startless TOF formalismП.Кравченко(?)MC study light yield, time resolutionО.ЛевицкаяMC studies/hyperon productionО.Миклухоразработка/испытания прототипаЮ.НарышкинMC studies/hyperon production	А.Кащук	frontend electronics	
П.Кравченко(?)MC study light yield, time resolutionО.ЛевицкаяMC studies/hyperon productionО.Миклухоразработка/испытания прототипаЮ.НарышкинMC studies/hyperon production	А.Киселев(?)	startless TOF formalism	
О.ЛевицкаяMC studies/hyperon productionО.Миклухоразработка/испытания прототипаЮ.НарышкинMC studies/hyperon production	П.Кравченко(?)	MC study light yield, time resolution	
О.Миклухоразработка/испытания прототипаЮ.НарышкинMC studies/hyperon production	О.Левицкая	MC studies/hyperon production	
Ю.Нарышкин MC studies/hyperon production	О.Миклухо	разработка/испытания прототипа	
	Ю.Нарышкин	MC studies/hyperon production	

BACKUP SLIDES

Light quark hybrids (exotic).

Large widths

Experiment	Exotic	J^{PC}	Mass	$[MeV/c^2]$	Widt	th $[MeV/c^2]$	Decay	Refs.
E852	$\pi_1(1400)$	1^{-+}	1359	$^{+16}_{-14}$ $^{+10}_{-24}$	314	$^{+31}_{-29}$ $^{+9}_{-66}$	$\eta\pi$	[42]
Crystal Barrel	$\pi_1(1400)$	1^{-+}	1400	$\pm 20 \pm 20$	310	$\pm 50 \ ^{+50}_{-30}$	$\eta\pi$	[40]
Crystal Barrel	$\pi_1(1400)$	1^{-+}	1360	± 25	220	± 90	$\eta\pi$	[43]
Obelix	$\pi_1(1400)$	1^{-+}	1384	± 28	378	± 58	$\rho\pi$	[44]
E852	$\pi_1(1600)$	1^{-+}	1593	$\pm 8 + 29 \\ -47$	168	$\pm 20 + 150 \\ -12$	$\rho\pi$	[45]
E852	$\pi_1(1600)$	1^{-+}	1597	$\pm 10 {}^{+45}_{-10}$	340	$\pm 40 \pm 50$	$\eta'\pi$	[45]
Crystal Barrel	$\pi_1(1600)$	1^{-+}	1590	± 50	280	± 75	$b_1\pi$	[46]
Crystal Barrel	$\pi_1(1600)$	1^{-+}	1555	± 50	468	± 80	$\eta' \pi$	[41]
E852	$\pi_1(1600)$	1^{-+}	1709	$\pm 24{\pm}41$	403	$\pm 80 \pm 115$	$f_1\pi$	[47]
E852	$\pi_1(1600)$	1^{-+}	1664	$\pm 8{\pm}10$	185	$\pm 25 \pm 28$	$\omega \pi \pi$	[48]
E852	$\pi_1(2000)$	1^{-+}	2001	$\pm 30 \pm 92$	333	$\pm 52 \pm 49$	$f_1\pi$	[47]
E852	$\pi_1(2000)$	1^{-+}	2014	$\pm 20 \pm 16$	230	$\pm 32 \pm 73$	$\omega \pi \pi$	[48]
E852	$h_2(1950)$	2^{+-}	1954	± 8	138	± 3	$\omega \pi \pi$	[49]

Table 4.22: Light states with exotic quantum numbers. The experiment E852 at BNL was performed with a pion beam on a hydrogen target, while Crystal Barrel was a $p\overline{p}$ spectroscopy experiment at LEAR.

Interpretation

- the Z(3931) [21], observed in two-photon fusion and decaying predominantly into DD, is tentatively identified with the χ_{c2}(2P);
- the X(3940) [22], observed in double charmonium events, is tentatively identified with the η_c(3S);
- for all other new states (X(3872), Y(3940), Y(4260), Y(4320) and so on) the interpretation is not at all clear, with speculations ranging from the missing cc̄ states, to molecules, tetraquark states, and hybrids. It is obvious that further measurements are needed to determine the nature of these new resonances.

Pbar P fixed-target @FNAL (E835)

The E835 experiment was located in the Fermilab Antiproton Accumulator, where a stochastically cooled $(\Delta p/p \sim 10^{-4})$ beam intersects an internal jet target of molecular hydrogen. The \bar{p} beam was injected in the Accumulator with an energy of 8.9 GeV and decelerated to the 3.7–6.4 GeV energy range, to form the charmonium states. Stochastic cooling allowed to reduce RMS spreads on \sqrt{s} to less than 250 keV. The E835 experiment was the continuation of the E760 experiment, that took data in years 1990–91, at a typical instantaneous luminosity $\mathcal{L} \sim 0.5 \cdot 10^{31}$. The E760/E835 detector, described in

Table 2.5: Integrated luminosities Ldt (in pb⁻¹) taken by E760, E835-I, E835-II

State	Decay Channels	E760	E835-I	E835-II
η_c	$\gamma\gamma$	2.76	17.7	-
J/ψ	e^+e^-	0.63	1.69	-
χ_{c0}	$J/\psi\gamma, \gamma\gamma, 2\pi^0, 2\eta$	-	2.57	32.8
χ_{c1}	$J/\psi\gamma$	1.03	7.26	6.3
$h_c(1P)$ search	$J/\psi \pi^0, \eta_c \gamma$	15.9	46.9	50.5
χ_{c2}	$J/\psi\gamma,\gamma\gamma$	1.16	12.4	1.1
$\eta_c(2S)$ search	$\gamma\gamma$	6.36	35.0	-
ψ'	$e^+e^-, \chi_{cJ}\gamma, J/\psi\pi^0,$			
	$J/\psi \pi^+\pi^-, J/\psi \pi^0\pi^0, J/\psi \eta$	1.47	11.8	15.0
above	J/ψ +X	-	2.6	7.5

Table 4.43: Properties of strange and charmed ground state hyperons [11] that are energetically accessible at $\overline{\mathsf{P}}\mathsf{ANDA}$. The hyperon, its valence quark composition, mass, decay length $c\tau$, main decay mode, branching ratio \mathcal{B} and the decay asymmetry parameter α_Y are listed.

Hyperon	Quarks	Mass [MeV/ c^2]	$c\tau$ [cm]	Main decay	\mathcal{B} [%]	α_Y
Λ	uds	1116	8.0	$p\pi^{-}$	64	+0.64
Σ^+	uus	1189	2.4	$p\pi^0$	52	-0.98
Σ^0	uds	1193	$2.2\cdot 10^{-9}$	$\Lambda\gamma$	100	-
Σ^{-}	dds	1197	2.4	$n\pi^-$	100	-0.07
Ξ^0	uss	1315	8.7	$\Lambda \pi^0$	99	-0.41
Ξ^-	dss	1321	4.9	$\Lambda\pi^{-}$	100	-0.46
Ω^{-}	888	1672	2.5	ΛK^-	68	-0.03
Λ_c^+	udc	2286	$6.0 \cdot 10^{-3}$	$\Lambda \pi^+$	1	-0.91(15)
Σ_c^{++}	uuc	2454		$\Lambda_c^+ \pi^+$	100	
Σ_c^+	udc	2453		$\Lambda_c^+ \pi^0$	100	
Σ_c^0	ddc	2454		$\Lambda_c^+\pi^-$	100	
Ξ_c^+	usc	2468	$1.2\cdot 10^{-2}$	$\Xi^{-}\pi^{+}\pi^{+}$	seen	
Ξ_c^0	dsc	2471	$2.9\cdot 10^{-3}$	$\Xi^{-}\pi^{+}$	seen	-0.6(4)
Ω_c^{0}	ssc	2697	$1.9\cdot 10^{-3}$	$\Omega^-\pi^+$	seen	

Target spectrometer

Rin=0.9m L=2.8m Bmax=2T

Pellet target 10¹⁵ atoms/cm²

Muon det. Forward GEMs MVDs DIRCs EM calo Barrel TOF(?)

MVDs

Figure 2.4: The Micro-vertex detector of $\overline{\mathsf{P}}\mathsf{ANDA}$

Figure 2.5: Straw Tube Tracker in the Target Spectrometer.

Forward spectrometer

FTOF SiPMs

Dipole magnet 1m(vert) x 2m(hor) Bmax=2T L=2.5m 15GeV deviated by 2.2deg.

Forward acceptance

 $\pm 10 \deg.(horiz.) \pm 5 \deg.(vert.)$ 3.5m from

IP

Tracking system **FTOF RICH** FEM calo FMuon system

FTOF wall

PNPI @ PANDA

Anton A. Izotov, Gatchina 26.03.13

Done in last years:

- PMT test stand prototyping,
- PANDA prototype test @ PNPI-2009,
- Startless TOF reconstruction methodic,
- SiPM test stand prototyping,
- SiPM radiation hardness test,
- SiPM's @ OLYMPUS,
- PANDA prototype MC simulation,
- PANDA prototype test @ PNPI-2012,
- PANDA prototype test @ COSY-2012.

Prototyping @ PNPI 2009 (Preprint PNPI).

PMT R4998 & SiPM S10931-50p at theTest Stand $\Delta t = \Delta t_0 - A(\frac{1}{\sqrt{q_1}} - \frac{1}{\sqrt{q_2}}) - b$

R4998

Run	σ_0	σ1	σ2
40366	326	168	149
40367	497	170	142
40368	486	176	147

S10931-50p

Run	σ_0	σ1	σ2
40366	608	195	157
40367	543	199	151
40368	557	193	150

B408 – 3x3x40 mm³ TDC – 25 ps/chan PA - ~8 times Source - ⁹⁰Sr

σ worse than 160 пs

SiPM Radiation hardness test @ 1GeV PNPI proton beam.

- The absolute beam intensity was determined in a standard way by measuring induced radioactivity of irradiated aluminum foils.
- The beam intensity during the tests was varied in the range 1.3 2.1x10⁸ cm⁻²s⁻¹.
- The SiPM sample was not powered!
- Radiation was exposed in 10 successive periods about 10 minutes each. The integrated number of protons passing through the sensitive surface of the SiPM sample with the cross-section of 3x3 mm² was 0.9*10¹¹. By our estimations, such dose corresponds approximately to irradiation to be collected by a similar SiPM installed on a central scintillation bar of the Forward wall during 10 years of continuous beam producing hadrons off the PANDA target.
- SiPM parameters (dark noise, amplitude and time characteristics for different values of high voltage) were measured before and after the radiation test usingv test station with % r electron source source and after the voltage) were measured

٩	SI QV		``` A; ' mV `	N CICONDISE	Noise+90Sr
	72.06	0.15	40	1550	8700
	72.53	0.30	80	4230	18500
	72.06	81.0	4	2800	6200
	72.53	113.0	6	99000	102000

As it is seen from the table the SiPM was practically killed by this dose the value of which can be taken as upper limit,

- Yet it is important to find out at which dose the sample start malfunctioning,
- It is also important to compare irradiation effect on unpowered and powered samples,
- All this will constitute our nearest experimental program with SiPM samples.

 $dT = 0.056 C^{\circ}$

SiPM's @ OLYMPUS. DESY TB22.

Counters: 8mm/2SiPM's, 4mm/2SiPM's (corners), 4mm/2SiPM's (sides), Readout: 25x preamp (electronics workshop, KPH Mainz)

•QDC spectra to see light yield,

•QDC spectra with prescaled baseline triger mixed into determine gain for each spectrum,

- •Triple coincidence from beam trigger finger conciliators (2 with PMT's, 1 with SiPM)
- •Quadruple coincidence (3 PMT's, 1 SiPM and single SiPM
 - •efficiency scan,
 - maximum efficiency reachable with single SiPM

Analog Signals.

Examples for analog signals after 25x preamp and 20m RG58

SiPM noise (20MHz BW, total gain 25x)

SiPM signals with beam (200MHz BW, total gain 25x)

Light Yield and Trigger Scans.

- Both side-mounting and corner-mounting, counters have yields,
- Blind spots exist in both configurations,
- Side-mounting is easier,
- Trigger scan shows, that even one SiPM is enough with proper threshold

Prototype MC simulation.

- Simulation of optical processes in GEANT4.
- MC studies. Time distributions.
- First estimations for time resolution.

Scintillator BC 408

Z, (cm) 140

Plexiglass Mylar wrapping

Polina Kravchenko PANDA Collaboration Meeting

Darmstadt

BICRON 408 46 plates 140*10*2.5 cm³ 20 plates 140* 5*2.5 cm³

PMT:

Hamamatsu R2083, R4998

TOF Side

14 plates 100*10*2.5 cm³

SiPM

panda MC Distributions z=0

PMT R2083 Hamamatsu $10^6 e^{-1}$ with σ ~370ps

Protons: 900 MeV Plastic: B408 140X 5X 2.5 cm 140X 10X 2.5 cm PMT's: R4998, R2083 TDC: CAEN V775N QDC: PNPI 8CDC

Лучше 100 пс

Измерения на пучке ПИЯФ.

- Counter: B408, 140x5x1.5 cm³, R4998X2,
- Two counters: B408, 1x1x1 cm³, PMT-187,
- Flash QDC 24 ps/ch (Marek Palka, Jagellonian University, Krakow),
- Beam: protons E=2GeV, d=3cm,
- Collimator 0.2x3 cm.

Plans:

- SiPM?
- MC development,
- Side TOF Wall prototype,
- TDR.

Charmonium Spectrumm

<u>Main issues</u>

•All 8 states below threshold observed, some (precision) measurements still missing: •h_c (e.g. width) •η_c(1S) • $\eta_c(2S)$ (small splitting from $\psi(2S)$) The region above open charm threshold must be explored in great detail: •find missing D-wave states ${}^{3}D_{1} \leftrightarrow \psi(3770) {}^{1}D_{2}, {}^{3}D_{2}, {}^{3}D_{3}$ narrow explain newly discovered states (X, Y, Z, c c or other) confirm vector states seen in R

Matter and interaction

Standard Model. Where we are ?

Very succesful but obviously Not final

Charmonium states

State	expt	GI85	FU91	EQ94	GJ96	EFG03	ZVR95
		[171]	[175]	[196]	[179]	[173]	[180]
$1^{3}S_{1}$	9460	9465	9459	9464	9460	9460	9460
1^1S_0		9402	9413	9377	9408	9400	9410
$1^{3}P_{2}$	9913	9897	9911	9886	9914	9913	9890
$1^{3}P_{1}$	9893	9876	9893	9864	9893	9892	9870
$1^{3}P_{0}$	9860	9847	9865	9834	9862	9863	9850
$1^1 P_1$		9882	9900	9873	9901	9901	9880
2^3S_1	10023	10003	10015	10007	10016	10023	10020
2^1S_0		9976	9992	9963	9991	9993	10000
$1^{3}D_{3}$		10155	10172	10130		10162	10150
$1^{3}D_{2}$	10162	10147	10166	10126		10158	10150
$1^{3}\mathrm{D}_{1}$		10138	10158	10120		10153	10140
$1^{1}D_{2}$		10148	10167	10127		10158	10150
$2^{3}P_{2}$	10269	10261	10269	10242	10270	10268	10280
$2^{3}P_{1}$	10255	10246	10256	10224	10254	10255	10260
$2^{3}P_{0}$	10232	10226	10234	10199	10229	10234	10240
$2^{1}P_{1}$		10250	10261	10231	10259	10261	10270
3^3S_1	10355	10354	10356	10339	10358	10355	10390
3^1S_0		10336	10338	10298	10338	10328	10370

Table 3.5: Predicted and observed masses of $b\bar{b}$ states.

penguin graph, responsible for direct CP-violation

Indirect CP violation in kaon system (K0 antiK0 mixing)

Charmonium in Nuclei

- Measure J/ψ and D production cross section in p annihilation on a series of nuclear targets.
- J/ψ nucleus dissociation cross section
- Lowering of the D⁺D⁻ mass would allow charmonium states to decay into this channel, thus resulting in a dramatic increase of width

 $\psi(1D) 20 \text{ MeV} \rightarrow 40 \text{ MeV}$ $\psi(2S) .28 \text{ MeV} \rightarrow 2.7 \text{ MeV}$

- \Rightarrow Study relative changes of yield and width of the charmonium states.
- In medium mass reconstructed from dilepton (c c) or hadronic decays (D)

Experimental Method

The cross section for the process: $pp \rightarrow R \rightarrow final state$ is given by the Breit-Wigner formula:

$$\sigma_{BW} = \frac{2J+1}{4} \frac{\pi}{k^2} \frac{B_{in} B_{out} \Gamma_R^2}{(E-M_R)^2 + \Gamma_R^2 / 4}$$

The production rate v is a convolution of the

BW cross section and the beam energy distribution function $f(E, \Delta E)$:

$$\nu = L_0 \left\{ \varepsilon \int dE f(E, \Delta E) \sigma_{BW}(E) + \sigma_b \right\}$$

The resonance mass M_R , total width Γ_R and product of branching ratios into the initial and final state $B_{in}B_{out}$ can be extracted by measuring the formation rate for that resonance as a function of the cm energy *E*.

Beam Energy and Width Measurement

In pp annihilation the precision in the measurement of mass and width is determined by the precision in the measurement of the beam energy and beam energy width, respectively.

$$E_{cm} = \sqrt{2}m_p(1+\gamma)^{1/2}$$

$$\gamma = \frac{E_{beam}}{m_p} = \frac{1}{\sqrt{1 - \beta^2}} \qquad \beta = f \cdot L$$

$$\frac{\delta E_{cm}}{E_{cm}} = \frac{\beta^2 \gamma^3}{2(1+\gamma)} \sqrt{\left(\frac{\delta f}{f}\right)^2 + \left(\frac{\delta L}{L}\right)^2}$$

η is a machine η parameter which can be measured to ~ 10 %

 η machine slip factor

The beam revolution frequency f can be measured to 1 part in 10⁷ from the beam current Schottky noise. In order to measure the orbit length L to the required precision (better than 1 mm) it is necessary to calibrate using the known mass of a resonance, e.g. the ψ' for which $\Delta M = 34$ keV.

PDG List of cc States

 $η_c(1S) J/ψ(1S) \chi_{c0}(1P) \chi_{c1}(1P) \chi_{c2}(1P) h_c(1P) η_c(2S) ψ(2S)$

ψ(3770) X(3872) X(3915) χ_{c2}(2P) X(3940) ψ(4040)

 $X(4050)^{\pm} X(4140) \psi(4160) X(4160) X(4250)^{\pm} X(4260)$

 $X(4350) X(4360) \psi(4415) X(4430)^{\pm} X(4660)$

η_c(1S)

WEIGHTED AVERAGE 29.7±2.1 (Error scaled by 2.0)

> Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information.

 $\eta_c(1S)$ WIDTH

$h_c(1P)$

$$I^{G}(J^{PC}) = ??(1^{+-})$$

Quantum numbers are quark model prediction, C = - established by $\eta_c \gamma$ decay.

hc(1P) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
3525.41±0.16 OUR A	VERAGE	Error includes scale	facto	r of 1.2.	
$3525.40 \pm 0.13 \pm 0.18$	3679	ABLIKIM	10B	BES3	$\psi(2S) \rightarrow \pi^0 \gamma \eta_c$
$3525.20 \pm 0.18 \pm 0.12$	1282	¹ DOBBS	08A	CLEO	$\psi(2S) \rightarrow \pi^0 \eta_c \gamma$
$3525.8 \pm 0.2 \pm 0.2$	13	ANDREOTTI	05B	E835	$\overline{p}p \rightarrow \eta_C \gamma$
 • • We do not use 	the followir	ng data for averages,	fits,	limits, e	tc. • • •
3525.6 ±0.5	92^{+23}_{-22}	ADAMS	09	CLEO	$\psi(2S) \rightarrow 2(\pi^{+}\pi^{-}\pi^{0})$
$3524.4 \pm 0.6 \pm 0.4$	168 ± 40	² ROSNER	05	CLEO	$\psi(2S) \rightarrow \pi^0 \eta_c \gamma$
3527 ±8	42	ANTONIAZZI	94	E705	300 π^{\pm} , pLi \rightarrow
					$J/\psi \pi^0 X$
$3526.28 \pm 0.18 \pm 0.19$	59	³ ARMSTRONG	92D	E760	$\overline{p}p \rightarrow J/\psi \pi^0$
$3525.4 \pm 0.8 \pm 0.4$	5	BAGLIN	86	SPEC	$\overline{p}p \rightarrow J/\psi X$

¹Combination of exclusive and inclusive analyses for the reaction $\psi(2S) \rightarrow \pi^0 h_c \rightarrow 0$

 $\pi^0 \eta_c \gamma$. This result is the average of DOBBS 08A and ROSNER 05.

² Superseded by DOBBS 08A.

³Mass central value and systematic error recalculated by us according to Eq. (16) in ARMSTRONG 93B, using the value for the $\psi(25)$ mass from AULCHENKO 03.

h_c(1P) WIDTH

VALUE (MeV)	<u>a</u> %	EVTS	DOCUMENT ID		TECN	COMMENT
<1		13	ANDREOTTI	05B	E835	$\overline{p}p \rightarrow \eta_{c}\gamma$
• • • We do not	use th	e following	g data for averages	, fits,	limits, e	etc. • • •
<1.44	90	3679	⁴ ABLIKIM	10B	BES3	$\psi(2S) \rightarrow \pi^0 \gamma \eta_c$
<1.1	90	59	ARMSTRONG	92D	E760	$\overline{\rho} p \rightarrow J/\psi \pi^0$
⁴ The central va	alue is	$\Gamma = 0.73 =$	$\pm 0.45 \pm 0.28$ MeV	1.		

$\eta_c(2S)$

$\eta_c(2S)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
3638.9±1.3 OUR /	VERAGE				
$3638.5 \pm 1.5 \pm 0.8$	624	¹ DEL-AMO-SA	11M BABR	$\gamma \gamma \rightarrow K_{S}^{0} K^{\pm} \pi^{\mp}$	
$3640.5 \pm 3.2 \pm 2.5$	1201	¹ DEL-AMO-SA	11M BABR	$\gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$	
$3636.1 + 3.9 + 0.7 \\ -4.2 - 2.0$	128	² VINOKUROVA	A 11 BELL	$B^\pm \to \ K^\pm (K^0_S K^\pm \pi^\mp)$	
$3626 \pm 5 \pm 6$	311	³ ABE	07 BELL	$e^+e^- \rightarrow J/\psi(c\overline{c})$	
$3645.0 \pm 5.5 + 4.9 \\ -7.8$	121 ± 27	AUBERT	05c BABR	$e^+e^- \rightarrow J/\psi c \overline{c}$	
$3642.9 \pm 3.1 \pm 1.5$	61	ASNER	04 CLEO	$\gamma \gamma \rightarrow \eta_c \rightarrow \kappa_5^0 K^{\pm} \pi^{\mp}$	
• • • We do not u	se the follow	ing data for avera	ges, fits, limi	ts, etc. • • •	
3639 ±7	98 ± 52	⁴ AUBERT	06E BABR	$B^{\pm} \rightarrow K^{\pm}X_{c\overline{c}}$	
$3630.8 \pm 3.4 \pm 1.0$	112 ± 24	⁵ AUBERT	04D BABR	$\gamma \gamma \rightarrow \eta_c(25) \rightarrow K\overline{K}\pi$	
3654 ±6 ±8	39 ± 11	6 CHOI	02 BELL	$B \rightarrow KK_SK^-\pi^+$	
3594 ±5		7 EDWARDS	82C CBAL	$e^+e^- \rightarrow \gamma X$	
¹ Ignoring possible interference with continuum.					
² Accounts for interference with non-resonant continuum.					

³From a fit of the J/ψ recoil mass spectrum. Supersedes ABE,K 02 and ABE 04G.

⁴ From the fit of the kaon momentum spectrum. Systematic errors not evaluated. ⁵ Superseded by DEL-AMO-SANCHEZ 11M.

⁶Superseded by VINOKUROVA 11.

⁷Assuming mass of $\psi(2S) = 3686$ MeV.

η_c(25) WIDTH

VALUE (MeV)	CL%	EVTS	DOCUMENT ID)	TECN	COMMENT
10 ± 4 (OUR AVE	RAGE				
$13.4 \pm 4.6 \pm$	3.2	624	⁸ DEL-AMO-S	A11M	BABR	$\gamma \gamma \rightarrow K^0_S K^{\pm} \pi^{\mp}$
6.6^+ $\begin{array}{c} 8.4 \\ 5.1 \\ \end{array}$	2.6 0.9	128	⁹ VINOKURO	/A 11	BELL	$^{B^{\pm}}_{\kappa^{\pm}(\kappa^{0}_{5}\kappa^{\pm}\pi^{\mp})}$
6.3±12.4±	4.0	61	ASNER	04	CLEO	$\gamma \gamma \rightarrow \eta_c \rightarrow K^0_c \kappa^{\pm} \pi^{\mp}$
•••We don	ot use th	e following	data for averages	s, fits, l	imits, et	IC. • • •
<23	90	98 ± 52	¹⁰ AUBERT	06E	BABR	$B^{\pm} \rightarrow K^{\pm}X_{c\overline{c}}$
22 ±14		121 ± 27	AUBERT	05C	BABR	$e^+e^- \rightarrow J/\psi c\overline{c}$
$17.0 \pm 8.3 \pm$	2.5	112 ± 24	11 AUBERT	04D	BABR	$\gamma \gamma \rightarrow \eta_c(2S) \rightarrow$
			12			$K\overline{K}\pi$
<55	90	39 ± 11	12 CHOI	02	BELL	$B \rightarrow K K_S K^- \pi^+$
<8.0	95		¹³ EDWARDS	82C	CBAL	$e^+e^- \rightarrow \gamma X$

 $\chi_{c2}(2P)$

 $I^{G}(J^{PC}) = 0^{+}(2^{+})$

$\chi_{c2}(2P)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
3927.2±2.6 OUR	AVERAGE				
$3926.7 \pm 2.7 \pm 1.1$	76 ± 17	AUBERT	10 G	BABR	10.6 $e^+e^- \rightarrow e^+e^- D\overline{D}$
$3929 \hspace{0.2cm} \pm 5 \hspace{0.2cm} \pm 2$	64	UEHARA	06	BELL	10.6 $e^+e^- \rightarrow e^+e^- D\overline{D}$

$\chi_{c2}(2P)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
24 ± 6 OUR	AVERAGE				
$21.3 \pm \ 6.8 \pm 3.6$	76 ± 17	AUBERT	10g	BABR	10.6 $e^+e^- \rightarrow e^+e^- D\overline{D}$
$29 \hspace{0.2cm} \pm \hspace{0.2cm} 10 \hspace{0.2cm} \pm \hspace{0.2cm} 2$	64	UEHARA	06	BELL	10.6 $e^+e^- \rightarrow e^+e^- D\overline{D}$

$\chi_{c2}(2P)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Г1	$\gamma\gamma$	seen
Γ2	$\overline{K}\overline{K}\pi$	
Γ ₃	$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	
Г4	$D\overline{D}$	seen
Γ ₅	$D^+ D^-$	seen
Г ₆	$D^0 \overline{D}{}^0$	seen

Stochastic and electron cooling

Stochastic cooling is a form of <u>particle beam cooling</u>. It is used in some <u>particle accelerators</u> and <u>storage rings</u> to control the <u>emittance</u> of the <u>particle beams</u> in the machine. This process uses the <u>electrical signals</u> that the individual <u>charged particles</u> generate in a <u>feedback loop</u> to reduce the tendency of individual particles to move away from the other particles in the beam. It is accurate to think of this as <u>thermodynamic</u> cooling, or the reduction of <u>entropy</u>, in much the same way that a <u>refrigerator</u> or an <u>air conditioner</u> cools its contents.

Electron cooling

From Wikipedia, the free encyclopedia

Jump to: navigation, search

<u>Electron</u> cooling is a process to shrink the size, <u>divergence</u>, and energy spread of <u>charged particle beams</u> without removing particles from the beam. Since the number of particles remains unchanged and the space coordinates and their derivatives (angles) are reduced, this means that the <u>phase space</u> occupied by the stored particles is compressed. It is equivalent to reducing the temperature of the beam. See also <u>stochastic cooling</u>.

It was invented by <u>Gersh Budker (INP</u>, Novosibirsk) in 1966 for the purpose of increasing luminosity of <u>hadron colliders</u>.^[1] It was first tested in 1974 with 68 <u>MeV protons</u> at NAP-M storage ring at INP.

Electron cooler (left) at LEIR/<u>CERN</u>. The electron source and dump are installed in the upper metallic cylinders. Basically, electron cooling works as follows:

The <u>velocity</u> of the electrons is made equal to the average velocity of the <u>ions</u>.

The ions undergo <u>Coulomb scattering</u> in the electron "gas" and lose energy, which is transferred from the ions to the co-streaming electrons until some <u>thermal equilibrium</u> is attained.