

Метод восстановления состаренных газоразрядных детекторов в газовом разряде CF₄/CO₂

Г.Гаврилов, Д.Аксёнов, В.Вахтель, А.Крившич, Д.Майсузенко, А.Фетисов, Н.Швецова.

Содержание:

- 1. Стенд для исследования процессов старения и восстановления
- 2. «Классическое старение» Q ≤ 1 C/cm
- Распухание анодных проволочек в газовой смеси Ar/CO₂/CF₄ Q ≥ 1 C/cm
- 4. Метод восстановления проволочки в газовом разряде 80%СF₄+20%CO₂
- 5. Многократное восстановление детектора
- 6. Заключение

Старение - деградация характеристик газовых детекторов

Следствие -

 Сокращение плато
 эффективности из-за падения амплитуды;

□Ухудшение dE/E разрешения;

Возрастание темновых токов;

Самостоятельные токовые разряды;

□Искрение и пробои.

B.Schmidt: "Detectors are like us: aging is unavoidable, surviving in a good shape is the main issue."

Степень деградации рабочих параметров детектора зависит от величины: аккумулированного заряда Q на ед. длины

проволочки

 $Q = G \cdot F \cdot T \cdot n \cdot e$

G – КГУ; *F* – интенсивность; *T*- время облучения; n – первичная ионизация

Оценка скорости старения

$$R = -\frac{1}{G} \cdot \frac{dG}{dQ} - [\%/(C/cm)]$$

Единица измерения заряда *Q: С/ст* – проволочки или стрипа в MWPC, MSGC *С/ст*²или *С/тт*²(RPC, GEM, MicroMegas)

Экспериментальная установка по исследованию процессов старения

Jadro 2011

«Классическое» старение сегодня

При подготовке экспериментов на LHC
 проанализированы все современные
 материалы для газоразрядных детекторов

	Conductive Epox		'Rejectable' Epoxy Compounds Room-T Curing					
	Source	Name	0			aring		
	CERN/GDD	TRADUCT 2922 SILBER LEITKLEBER		Source CERN/GDD	Product	Outgas	Effect	Result
	ATLAS/TRT	3025 (A+B) TRABOND 2902		ATLAS/IRT CERN/GDD	(Hardener HV 935 U)	YES	- G.D.	BAD
			71	CERN/GDD	DURALCO 4525	YES	YES	BAD
	Adhesive 7 Source Outgassing Tests of Leak			Sealers	L 8862	YES	YES	BAD BAD
				Effect	in Global 263)	YES	•	BAD
		Type O	utg	as G.I	OK BULL	YES	:	BAD BAD
	Source M	ARIAN Solvent-free epoxy resin	N		10 OK?	YES	- 1	DAD
	CERN/GDD RI CERN/GDD DC CERN/GDD DC HERA-B /OTR	forr-seal CPOUS IODORSIL Caoutchouc CAF4 Silicone RTV WCORNING Silicone based R4.3117 RTV Polyurethane- 5220 based	r T	YES in very set of the	NO OK ? mail quantities BAD			

Si образования на аноде

Si образования на катоде

□ Список компонент рабочих газовых смесей сократился: Ar / Xe / CO₂ / CF₄ / O₂

□ Главная причина старения - образование осадков <mark>Si</mark>

Источники: герметики, вакуумные уплотнения, смазка

Образование осад<mark>ков</mark> при Q < 1_C/cm

Удаление осадков Si, SiO₂ в газовом разряде 80%CF₄+20%CO₂

Fig. 15. (a) Dependence of the relative gas gain in the zone irradiated by ⁹⁰Sr versus charge accumulated by the anode wires. The aging performed using magnet chambers gas mixture. (b) Dependence of the relative gas gain during the recovery procedure with glow discharge versus the accumulated charge of

Si + CF₃[·] + F[·] + 2O \rightarrow SiF₄ \uparrow +CO₂ \uparrow SiO₂ + 4F[·] \rightarrow SiF₄ \uparrow +O₂ \uparrow Si + 4F[·] \rightarrow SiF₄ \uparrow

Fig. 11. SEM micrograph of the anode wire irradiated in the fifth test point (see Fig. 6) after accumulation of $Q_{anode}^{point 5} = 32 \,\mathrm{mC/cm}$ and XEM spectra of the deposits on the surface.

Fig. 16. A comparison of the charge spectrum shape after exposure to gas S_* mixtures Ar/CO₂/CF₄ and CF4/CO₂.

S. Belostotski et al. / Nuclear Instruments and Methods in Physics Research A 591 (2008) 353-366

Распухание анодных проволочек в Ar/Xe/CO₂/CF₄

27.09.2011

Jadro 2011

Динамика падения КГУ вдоль straw из-за распухания

Динамика процесса распухания (swelling)

Распухшая анодная проволочка

Поверхность проволочки на силовом микроскопе C3M Solver P47 pro (тип кантилевера HA-NC)

До облучения

При Е~2×10⁵ В/см на поверхности, на острие Е ≥10⁷В/см При Е • 12071В/см плотность тока автоэмиесии j=200 мкА/см².

(Райзер Ю.П. «Физика газового разряда»)

Восстановление проволочки в газовом разряде 80%CF₄+20%CO₂

- Инвертированое B/B, 80%CF₄+20%CO₂ (F/C=3.2 ∈ 0.1<F/C<4) => Коронный разряд=> Тлеющий разряд => Образование F[•], CF₃⁺, CF₃[•]
- 2. => травление «анодной» проволочки =>WF₆ ↑
- **3.** => десорбция CF₃[•] и фторидов WF₅, WF₄ под воздействием γ -квантов ⁵⁵Fe и ионов CF₃⁺

Вольт-амперная характеристика развития коронного разряда

плато -ток 10÷20 рА до 2100 V => ионизация от ⁵⁵Fe и электронов вторичной эмиссии, вырванных ионами CF₃⁺ из W;

> 2100 V => Таунсендовское усиление в газе (коронный разряд) $\int_{r_1}^{r_2} \alpha(E) dr = \ln(1 + \frac{1}{\gamma})$ > 2400-2700 V=> I ≤ 1 µА - импульсы Тричела с амлитудой до 4 mА > 2650-2700 V ==> ток стабилизируется => тлеющий разряд 11

Условия развития газового разряда в CF₄/CO₂

Травление WO_x в газовом разряде CF₄/CO₂

I ≤ 1 μА - импульсы Тричела до 4 mA

I ≥ 5 µА – ток тлеющего разряда

Десорбция молекул **CF**₃· и фторидов **WF**₅, **WF**₄ происходит при бомбардировке поверхности ионами **CF**₃⁺ с энергией ε = **4-5 eV** и γ -квантами E=6 keV

$$\overline{\varepsilon}_{i} \approx \frac{\left(M_{CF4} + M_{CF3}\right)^{3/2}}{2M_{CF4}\sqrt{M_{CF3}}} e \ E \cdot l \approx 3 \ eV$$

M_{CF4} = 1.46×10⁻²² g; *M_{CF3}* = 1.15×10⁻²² g − массы молекул *E* = 200÷300 kV/cm

$$\ell = \frac{1}{\sqrt{2}N\pi \cdot d_{CF_3^+}^2} \approx 0.8\,\mu m$$

 ℓ - длина свободного пробега CF₃⁺ в CF₄ *N*- число Лошмидта – 2.685×10¹⁹ 1/cm³ d_{CF3}^+ - диаметр молекулы CF₃ = 0.3 nm

27.09.2011

Многократное восстановление анодной проволочки

Jadro 2011

Результаты SEM/XEM анализа поверхности проволочек

27.09.2011

Jadro 2011

Результаты SEM/XEM анализа поверхности

27.09.2011

Заключение

 Разработана и успешно испытана на пропорциональных счетчиках методика многократного восстановления после распухания анода

✓ Применение методики многократного восстановления позволяет в 2÷3 раза увеличить время жизни детекторов при работе в радиационных полях с интенсивностью до 4 МГц на 1 см длины проволочки, что соответствует набранной дозе 3 Кл/см Task 41. Relative gas gain vs Accumulated charge. 70%Ar+30%CO2, Wire diameter - 50 mcm, Left straw Working point - 1760V (Gas gain=100000) 20.08.07 - 04.09.07

Jadro 2011

PANDA straw aging at 3 GeV proton beam

Ageing Test Results contn'd

- After beam time straws exposed to ⁵⁵Fe source along tube
- Measure gas gain loss by change of signal amplitude height (dA/A₀)
- No loss seen for Ar/CO₂ (30%) and Ar/Ethane (10%)
- Small gas gain drop (<7%) seen for Ar/CO₂ (10%) in some straws
- Localized, correlated with beam intensity
- Charge load: ~ 0.6 1.2 C/ cm
- Equiv. to ~ 5 years PANDA-STT

Straw no	Gas mixture @ 1.65 bar	Ι _{max} (μΑ)	ΣQ (C/cm) in 199h	Ageing <u> </u> <u> </u>	
1 – 8	Ar/CO ₂ (10%)	1.4	0.72	03%	1
9 – 16		1.1	0.58	07%	1
17 – 20	A-100 (20%)	2.3	1.23	no	
21 – 24	Anco ₂ (30%)	1.5	0.79	no	
25 – 32	Ar/C2H6 (10%)	1.7	0.87	no	

Longitudinal position (cm)

Ageing Explanation

Possible explanation of small gas gain loss in some of the Ar/CO₂ filled straws

- Highest ionisation density by p-beam perpendicular and close to the wire
- CO₂(10%-fraction) with limited avalanche quenching capability
- 2nd avalanche initiated, limited streamer mode (LSM), pulse with double-peak shape and very high amplitude (~ A×100)
- Highest density of oxygen ions & radicals, penetrate thru the Au-layer to wire
- Wire oxidation with diameter swelling, gas gain loss by reduced E-field (~1/r)
- Less LSM and no ageing observed for Ar/CO₂(30%) and Ar/C₂H₆(10%)
- Better quenching capability, even at higher gains
- Needs more and systematic investigation to clarify
- At moderate gas gains of ~ 5×10⁴ no LSM (<1%)

Limited streamer mode pulses (LSM) with typical double-peak shape

Тлеющий разряд в straw

Тлеющий разряд – это самоподдерживающийся разряд с холодным катодом, испускающим электроны в результате вторичной эмиссии, главным образом под действием положительных ионов. (Ю. П. Райзер)

• Условие зажигания самостоятельного Таунсендовского разряда в straw : $\int_{r_2}^{r_2} \alpha(E) dr = \frac{1}{r_2} \int_{r_2}^{r_2} \frac{1}{r_2} dr$

$$\int_{r_1} \alpha(E) dr = \operatorname{In}(1 + -)$$

где $\alpha(E) = A \bullet p \bullet \exp\left(-\frac{Bp}{E}\right) \qquad E = \frac{U}{r_1 \ln\left(\frac{d}{r_1}\right)}$
Для 80%CF4+20%CO2 : A=10 Па⁻¹ м⁻¹ $r_1 \ln\left(\frac{d}{r_1}\right)$
B=188 В Па⁻¹ м⁻¹

U=2100 В - напряжение зажигания самостоятельного Таунсендовского разряда в straw .

• Дебаевский радиус экранирования в плазме тлеющего

разряда :
*г*_Д = 743 √
$$\frac{T_e}{n_e}$$
 ≈6 мкм << d=2000 мкм

=> плазма тлеющего разряда

 Толщина катодного слоя в тлеющем разряде оценивается по формуле:

$$H_c = \frac{\ln\left(1 + \frac{1}{\gamma}\right)E_0}{ABp^{-2}\Phi(z)} \approx 20 \text{ MKM}$$

Е. П. Велихов, А. С Ковалев, А. Т. Рахимов, Физические явления в газоразрядной плазме

• Положение максимума концентрации ионизированной электронами плазмы можно вычислить по формуле:

$$x_m = l_c - \lambda \ln \left(\frac{1}{d - l_c} \left(1 - \exp\left(- \frac{d - l_c}{\lambda} \right) \right) \right) \approx 220$$
 мкм

А. А. Кудрявцев, А. В.Морин, Л.Д. Цендин, Роль нелокальной ионизации в формировании коротких тлеющих разрядов, Ж. т. ф. 78(8), 2008

Поверхность проволочки на силовом микроскопе C3M Solver P47 pro (тип кантилевера HA-NC)

Two long term aging tests have been performed:

Ist test at GIF in 2001, where charges of 0.25 C/cm have been accumulated in 6 months.

Open loop gas system has been used
 Gas mixture: Ar / CO2 / CF4 (40%, 50%, 10%)

↓ 2nd test at ENEA Cassacia in June 2003, where charges of 0.5 C/cm have been accumulated in 1 month (using the 25kCi (!) Co source). One chamber has been in open loop, one in closed loop Gas mixture: Ar / CO2 / CF4 (40%, 40%, 20%)

Parameters controlled :

Relative gas gain: In both tests one gap was used as reference gap to avoid complicated corrections for P and T variations. The reference gap was only for very short periods per day under HV and always flashed with the fresh gas. Dark currents, including self-sustaining rest current following the beam off. The dark currents were measured with current monitors with a resolution of 1 nA.

Summary of Results from Cassacia

Accumulated charges:

Chamber	Gap	IC (C/cm)
M3R1	A,C,D	0.43
S/A	S1	0.52
S/A	S2	0.42
S/A	A2	0.38

- No signs for aging from the measured parameters:
 - + Relative currents did not change.
 - + Malter currents were not observed.
 - No variations in current ratios after/before Casaccia from measurements with GIF and with an Am-source.

Detaching of the ground grid between the pads Jadro 2011 (due to FR4 etching) 28

Analysis of Deposits on Cathodes

Effects in the Gas System

Rotameter glass tube etching

Inner glass surface of a gas rotameter from closed loop is strongly eroded (Flurine was found).
O-rings (from NBR) used in valves of the gas system are damaged.

Substance	Process Gases	Mixtures
Photoresist	O2 O2 + CF4	100% 80% + 20%
Polyimide	02 02 + CF4	100% 80% + 20%
Polyuethane	O2 O2 + CF4	100% 80% + 20%
Single Crystal Silicon	CF4 CF4 + O2	100% (80 - 92%) +(20 - 8%)
	SF6 SF6 + O2	100% (80 - 90%) + (20 - 10%)
Silicon Oxide (SiO2)	CF4 CF4 + O2 C2F6 CF3H C3F8	100% (80 - 92%) + (20 - 8%) 100% 100% 100%
Silicon Nitride (Si3N4)	CF4 CF4 + O2 SF6 CF3H NF3	100% (80 - 92%) +(20 - 8%) 100% 100% 100%
Epoxy Bleedout	Ar Ar + O2 Ar + H2	100% (90% - 70%) + (10% - 30%) (90% - 70%) + (10% - 30%)
Tungsten	CF4 + O2	(70 - 92%) +(30 - 8%)
GaAs	CH4	100%