

ЗАО «ИНКРОМ», СП ПИЯФ, Гатчина ИОФАН, Москва СПбГПУ

Сверхбыстрые сцинтилляторы на основе фторида бария для РЕТ и других применений

П.А. Родный ноябрь 2010

СПбГПУ лаборатория Физики Ионных Кристаллов

Ионизирующее излучение

Spectral Response Si-PIN Ultrafast Photodetectors τ = 50-500 ps UPD-200-UP, UPD-300-UP, UPD-500-UP UPD-200-SP, UPD-300-SP, UPD-500-SP

New photodetectors – SiPM, SSPM

P.Bazhan et al. NIM A, **504** (2003)

СПбГПУ лаборатория Физика Ионных Кристаллов

Электрический сигнал

Сцинтилляторы применяются:

- •Компьютерная томография
- Позитрон-эмиссионная томография (РЕТ)
- Single photon emission
 computed tomography (SPECT)
 Космические исследования
 Таможенный контроль
 Дозиметрия
- •Физика высоких энергий

Сцинтиллятор – лимитирующий фактор быстродействия детектора

СПбГПУ лаборатория Физики Ионных Кристаллов

Time of flight TOF-PET [W.Moses, IEEE, Trans. Nucl. Sci. NS-46 (1999) 474]

СПбГПУ лаборатория Физики Ионных Кристаллов

Properties of Inorganic Scintillators Used for PET

Material	LY, Phs/MeV	λ _m , nm	Atten. Length (511 keV), cm	τ, ns
NaI:Tl	38,000	415	3.3	230
LSO	24,000	420	1.2	40
BGO	8,200	505	1.1	300
GSO	7,600	430	1.5	60
BaF ₂	10,000	220/310	2.3	0.6/620

T. Bäck et al. NIM A **471**(2001) 200 / email: back@msi.se

A detector system for **PET** with **time-of-flight** capability has been built. The set-up consists of **48 BaF**₂ scintillator crystals, each coupled to a fast PMT, mounted in a circular geometry. The best **time resolution** for a pair of the detectors was **340 ps.**

ЛПИ, лаб. Физики ионных кристаллов

ЛПИ, лаб. Физики ионных кристаллов

Ceramics of CaF₂ (left), BaF₂ crystal (right)

Crystal dimensions (5×5×15) mm³

- Требования для РЕТ:
- Быстродействие
- Высокий световыход
- Высокое энерг. разреш.
- Низкая стоимость

- 1 нагреватель графитовый; 2 упор;
- 3 пуансон установки; 4 крышка;
- 5 обечайка; 6 экран верхний; 7 экран боковой;
- 8 вентиль сдувочный; 9 лампа манометрическая;

Микроструктура ВаF₂:Се керамики

М. Ш. Акчурин и др. ПЕРСПЕКТ. МАТЕРИАЛЫ (2006) стр. 5. Методами АСМ, РЭМ и ПЭМ показано, что в керамике CaF₂ зерна пронизаны системой параллельных полос, расстояния между которыми составляет 25 – 50 нм (двойники). Для керамики BaF₂ полосы не так характерны и группируются около границ зерен.

ЛПИ, лаб. Физики ионных кристаллов

Спектры рентгенолюминесценции (РЛ)

2 – керамика ВаF₂, 3 – кристалл ВаF₂:Се (0,1 мол.%),

4- керамика BaF₂:Се (0,1 мол.%)

СПбГПУ лаборатория Физика Ионных Кристаллов

Спектры РЛ

Интегральный световыход образцов BaF₂:Ce³⁺ выше, чем таковой у чистого BaF₂

Спектры РЛ образцов фторида бария: 1 – керамика BaF₂, 2 – керамика BaF₂:Се (0,1 мол.%)

Pulse height spectra of BaF_2 :Ce(0,1mol.%) /Cs¹³⁷/

Кинетика РЛ ВаF₂

Кинетика РЛ образцов фторида бария: 1 – керамика BaF₂, 2 – кристалл BaF₂

Кинетика РЛ

Кинетика РЛ образцов фторида бария: 1 – керамика BaF₂:Ce (0,05 мол.%), 2 – керамика BaF₂:Ce (0,1 мол.%)

Оптическое пропускание образцов BaF₂ толщиной 3 мм (*1, 2*) и BaF₂:Ce (0.025 мол.%), толщиной 15 мм (*3, 4*). *1, 3* — кристалл, *2, 4* — керамика

Оптическая керамика ВаF₂ и BaF₂:Се

Образец	Форма	Се ³⁺ ,	$\tau_{_{1}\prime}$ HC	I _m	τ ₂ , нс	τ ₃ , HC	LY
		мол%					
BaF ₂	Крист	-	0.9±0.3	1500	-	370±25	1.0
BaF ₂	Кер	-	0.9±0.4	1400	-	310±40	0.95
BaF ₂ :Ce	Кер	0.1	0.9±0.3	1200	29±4	360±40	1.74
BaF ₂ :Ce	Крист	0.1	1.3±0.4	1300	47±2	240±40	2.70
BaF ₂ :Ce	Кер	0.05	1.1±0.2	1400	30±7	265±40	1.98

СПбГПУ лаборатория Физика Ионных Кристаллов

Оптическая керамика BaF₂:Cd

Кинетика РЛ: 1 – кристалл BaF₂, 2 – кристалл BaF₂:Cd(1мол.%)

Интегральный световыход керамического образца BaF₂:Cd(0.1 мол.%) в 1.3 раза больше, чем таковой у нелегированного BaF₂

Оптическая керамика BaF₂:Sc

Получено увеличение амплитуды сверхбыстрого компонента в 3.6 раза по сравнению с нелегированным керамическим образцом, не прошедшим отжиг. При этом уменьшается интенсивность медленного компонента чуть

более чем в 2 раза

Степень деформации: $\delta = (l_0 - l_k)/l_k$

Кинетика РЛ образцов фторида бария: 1 – керамика $BaF_2 \delta = 243,3\%$,

2 – керамика BaF_2 :Sc (2мол.%), прошедшая отжиг в CF_4

δ=280%

СПбГПУ лаборатория Физика Ионных Кристаллов

Оптическая керамика на основе BaF₂:Sc

При различных концентрациях Sc и для различных степеней деформации интенсивность сверхбыстрого компонента ведет себя по-разному

Зависимость интенсивности сверхбыстрого компонента от степени деформации: $\delta = (l_o - l_k) / l_k$

- Установлено, что при оптимальной сезн во фториде бария интенсивность сверхбыстрого компонента РЛ практически такая же, как в чистом BaF₂
- Интегральная интенсивность РЛ BaF₂:Се³⁺ (кристаллов и керамик) существенно выше, чем для нелегированного кристалла BaF₂. В случае ВаF₂:Се³⁺ получено небольшое увеличение интенсивности РЛ для систем нанокерамика/монокристалл
- Показано, что при концентрации Cd²⁺ 1мол.% (кристалл) интенсивность сверхбыстрого компонента в 1.75 раза больше, чем для нелегированного кристаллического фторида бария
- Для керамического образца ВаF₂:Sc³⁺ (2мол.%), прошедшего отжиг в атмосфере CF₄ наблюдается увеличение амплитуды сверхбыстрого компонента в 3.6 раза по сравнению с нелегированным керамическим образцом, не прошедшим отжиг. При этом уменьшается интенсивность медленного компонента чуть более чем в 2 раза

Публикации по теме исследований

- A.A. Demidenko, E.A. Garibin, S.D. Gain, Yu.I. Gusev, P.P. Fedorov, I.A. Mironov, S.B. Michrin, V.V. Osiko, P.A. Rodnyi, D.M. Seliverstov, A.N. Smirnov. *Scintillation parameters of BaF₂ and BaF₂:Ce³⁺ ceramics*. Optical materials. 2010. V**32**. P1291-1293
- П.А. Родный, С.Д. Гаин, И.А. Миронов, Е.А. Гарибин, А.А. Демиденко, Д.М. Селиверстов, Ю.И. Гусев, П.П. Федоров, С.В. Кузнецов. Спектрально-кинетические характеристики кристаллов и нанокерамик на основе BaF₂ и BaF₂:Се. ФТТ, том **52**, вып.9, 2010, Стр.1780
- Е.А. Гарибин, С.Д. Гаин, П.Е. Гусев, Ю.И. Гусев, Д.В. Леушев, И.А. Миронов, П.А. Родный, Д.М. Селиверстов, А.Н. Смирнов. *Новые* сцинтилляторы на основе кристаллов и керамик фторида бария, Известия РАН, серия физическая (подано в печать)

Также по результатам работ поданы 2 заявки на изобретения

Участие в конференциях

- A.A. Demidenko, E.A. Garibin, S.D. Gain, Yu.I. Gusev, P.P. Fedorov, I.A. Mironov, S.B.Michrin, V.V. Osiko, P.A. Rodnyi, D.M. Seliverstov, A.N. Smirnov. Scintillation Parameters of BaF₂ and BaF₂:Ce³⁺ Ceramics. 5th Int. Symp. On Laser, Scintillator and Non Linear Optical Materials, Pisa, Italy, September 3-5, 2009
- С.Д. Гаин, П.А. Родный. Сцинтилляционные свойства оптических керамик на основе BaF₂, легированных Ce, Cd и Sc. Конференция по физике и астрономии для молодых ученых Санкт-Петербурга и Северо-запада, Санкт-Петербург, Россия, 29-30 октября 2009
- E.A. Garibin, S.D. Gain, P.E. Gusev, Yu.I. Gusev, D.V. Leushev, I.A. Mirinov, P.A. Rodnyi, D.M. Seliverstov, A.N. Smirnov. Ultra fast scintillators based on BaF₂ crystals and ceramics. LX International conference on nuclear physics "Nucleus 2010", Saint-Petersburg, Russia, July 6-9, 2010
- С.Д. Гаин, Е.А. Гарибин, А.Н. Смирнов, П.А. Родный, Д.М. Селиверстов. Оптические керамики на основе фторида бария. Международная научно-техническая конференция Нанотехнологии Функциональных Материалов, Санкт-Петербург, 22-24 сентября 2010

Также планируются доклады на Второй международной конференции ИСМАРТ-2010, Харьков, Украина, 14-19 ноября 2010

СПбГПУ лаборатория Физика Ионных Кристаллов

Положение RE ионов в BaF_2

ЛПИ, лаб. Физики ионных кристаллов