Систематика состояний Гамова-Теллера возбуждаемых в β⁺/ЕС распаде ядер вблизи N,Z=50 (по результатам измерений в GSI)

Suppression of the Gamow-Teller strength

•Isotopic dependence of energy and strength of the neutron-deficient nuclei with $44 \le Z \le 50$; N ≥ 50

- •Extrapolation to ¹⁰⁰Sn и ¹⁰¹Sn
- •allowed β_+ Gamow-Teller decays of the nuclei far from stability
- •Nuclei with N<50 and excitation across the N=50 core

GSI On-Line Mass Separator

ISOL

- Fusion-evaporation reaction, ~5 MeV/u ⁵⁸Ni beam, enriched 3mg/cm²
 ⁵⁰Cr target
- Extraction and ionization of 1⁺ ions
- Post acceleration to 55 keV

Total-Absorption Spectrometer (TAS)

¹⁰⁰In: C.Plettner et al., Phys. Rev. C66, 044319 (2002)
¹⁰²In: M. Gierlik et al., Nucl. Phys. A724, 313 (2003)
¹⁰³In: M. Karny et al., Nucl. Phys. A640, 3 (1998)
¹⁰⁴⁻¹⁰⁷In: M. Karny et al., Nucl.Phys. A690, 367 (2001)

97,98Ag: Z. Hu et al., Phys. Rev. C60, 024315 (1999), C60, 064315 (2000)
¹⁰⁰Ag: L. Batist et al., Z.Phys. A351, 149 (1995)

$$GT_{\pm} = \sum_{A} \sigma_{\mu} t_{\pm}$$

Single-particle transition $p \leftrightarrow n$, $nlj \rightarrow nlj'$

$$|Z_i - Z_f| = 1; \quad I_i^{\pi} \to I_f^{\pi}; \quad |I_i - I_f| \le 1$$

n

р

Gamow-Teller operator

$$GT_{\pm} = \sum_{A} \sigma_{\mu} t_{\pm}$$
$$B(GT_{\pm}) = (2I_i + 1)^{-1} | \langle f \parallel GT_{\pm} \parallel i \rangle |^2$$

Beta decay

Spin-charge exchange reaction

р

$$I_i / t_{1/2} = \frac{1}{3860} \cdot f(Q - E_i) B(\text{GT}_{\pm})$$

 $\partial \sigma_+(q=0) \sim B(GT_+)$

 $f = f_{\varepsilon} + f_{\beta}$

CLOSE TO STABILITY

¹⁰⁰Sn

Data used for systematics of OT properties												
50			¹⁰⁰ Sn	¹⁰¹ Sn	¹⁰² Sn	¹⁰³ Sn	¹⁰⁴ Sn	¹⁰⁵ Sn	¹⁰⁶ Sn	¹⁰⁷ Sn	¹⁰⁸ Sn	
49				100 In	¹⁰¹ In	102 I n	¹⁰³ In	¹⁰⁴ In	¹⁰⁵ In	¹⁰⁶ In	¹⁰⁷ In	
48			⁹⁸ Cd	⁹⁹ Cd	¹⁰⁰ Cd	¹⁰¹ Cd	¹⁰² Cd	¹⁰³ Cd	¹⁰⁴ Cd	¹⁰⁵ Cd	¹⁰⁶ Cd	
47			⁹⁷ Ag	⁹⁸ Ag	⁹⁹ Ag	¹⁰⁰ Ag	¹⁰¹ Ag	¹⁰² Ag	¹⁰³ Ag	¹⁰⁴ Ag	¹⁰⁵ Ag	
46		-	⁹⁶ Pd	⁹⁷ Pd	98Pd	99Pd	¹⁰⁰ Pd					
45												
44			⁹⁴ Ru			<u> </u>						
↑ Z	N	→	50	51	52	53	54	55	56	57	58	
						NaI -TAS						
		Me	asureme	ent with	Ge	Ge detectors						

Data used for systematics of GT⁺ properties

¹⁰⁰In: C.Plettner et al., Phys. Rev. C66, 044319 (2002)
¹⁰²In: M. Gierlik et al., Nucl. Phys. A724, 313 (2003)
¹⁰³In: M. Karny et al., Nucl. Phys. A640, 3 (1998)
¹⁰⁴⁻¹⁰⁷In: M. Karny et al., Nucl.Phys. A690, 367 (2001)

97,98Ag: Z. Hu et al., Phys. Rev. C60, 024315 (1999), C60, 064315 (2000) ¹⁰⁰Ag: L. Batist et al., Z.Phys. A351, 149 (1995)

GT-strength distributions

M.arny et al., Eur. Phys. J. A27, 129 (2006)

O. Kavatsyuk et al., Eur. Phys. J. A25, 211 (2005)

M. Kavatsyuk et al., Eur. Phys. J. A29, 183 (2005)

GT+ strength distributions ¹⁰⁰Ag-isomers

Energies of GT₊ states

$E_{\text{GT}} = \sum (E_i - Q_{\text{EC}}) \cdot B_i(\text{GT}_+) / S_+$

- -- (2)-1)
- Shell Model
- TAS high resolution

quenching

	valence shell Z	q	ref	
$ \begin{array}{c} \beta_{+} \\ \beta_{+} \\ \beta_{+,} \\ \beta_{+,} \\ \beta_{+} \end{array} $	$p Z < 8 \\ sd 8 \le Z \le 14 \\ pf 21 \le Z \le 23 \\ g 44 \le Z \le 50$	0.672(24) 0.59(3) 0.554(22) 0.507(20)	[1] [2] [3] this work	S _{res} /S _{calc}
GTR (β_{-}, β_{+}) (β_{-})	g ⁹⁰ Zr gdh ¹¹²⁻¹²⁴ Sn	0.65 0.65(3)	[4,5]. [6]	S _{res} /3(N-Z

1. B. H. Wildenthol et al., Phys. Rev. C28, 1343,(1983)

- 2. E. Caurier et al., Phys. Rev. C50, 225 (1994)
- 3. G. Martinez-Pinedo et al., Phys. Rev. C 53. R2602 (1996)
- 4. T. Wakasa et al., Phys. Rev. C 55, 2909 (1997).
- 5. K. Yako et al., Phys. Lett. B 615 (2005) 193.
- 6. K. Pham et al., Phys. Rev. 51, 426 (1995)

p,n and n,p reaction on ⁹⁰Zr

GT- (top panel) and GT+ (bottom panel) strength distributions (filled circles) obtained from the L = 0 cross sections deduced from the MDA.

from M. Ichimuraa et al., Progress in Part. Nucl. Phys. 56, 446 (2006)

$$(S_{-} - S_{+})_{N} = 3(N - Z)$$

$$\frac{B(GT_{+})_{n \to \Delta^{-}}}{B(GT_{-})_{n \to \Delta^{+}}} = \frac{B(GT_{-})_{p \to \Delta^{++}}}{B(GT_{+})_{p \to \Delta^{0}}} = 3$$

$$(S_{-} - S_{+})_{\Delta + N} = 0.36 \cdot 3(N - Z)$$

. Properties of $^{100}\mbox{Sn}$ and $^{101}\mbox{Sn}$ derived from

the extrapolation of systematics

		100Sn	1018	101Sn				
			5/2+	7/2+				
=========	====	=======	============					
<i>E</i> (GT) (MeV)		-4.95(11)	-4.45(-4.45(11)				
<i>B</i> (GT)		5.40(74)	4.75(4.75(66)				
<i>t</i> _{1/2} (s)		0.92(18)	1.76(30)	1.58(30)				
t _{1/2} (s) exp		1.0 $^{+0.54}_{-0.26}$	1.9(3)					
E_{χ} (MeV)	SM	2.23	4.09	4.39				
$Q_{\rm EC}$ (MeV)		7.18	8.54	8.84				
Q _{EC} (MeV) sys		7.390	9.05	4				

Crossing a border N<50

50				¹⁰⁰ Sn	¹⁰¹ Sn	¹⁰² Sn	¹⁰³ Sn	¹⁰⁴ Sn	¹⁰⁵ Sn	¹⁰⁶ Sn	¹⁰⁷ Sn	¹⁰⁸ Sn
49					¹⁰⁰ In	¹⁰¹ In	¹⁰² In	¹⁰³ In	¹⁰⁴ In	¹⁰⁵ In	¹⁰⁶ In	¹⁰⁷ In
48				⁹⁸ Cd	99Cd	¹⁰⁰ Cd	¹⁰¹ Cd	¹⁰² Cd	¹⁰³ Cd	¹⁰⁴ Cd	¹⁰⁵ Cd	¹⁰⁶ Cd
47	⁹⁴ Ag		⁹⁶ Ag	⁹⁷ Ag	⁹⁸ Ag	99Ag	¹⁰⁰ Ag	¹⁰¹ Ag	¹⁰² Ag	¹⁰³ Ag	¹⁰⁴ Ag	¹⁰⁵ Ag
46 ▲		⁹⁴ Pd		⁹⁶ Pd	⁹⁷ Pd	98Pd	99Pd	¹⁰⁰ Pd				
Ż			⁹⁴ Rh									
N→	47	48	49	50	51	52	53	54	55	56	57	58
Measurement with Ge detectors												

to be within Q_{EC} -window.

