ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКОЙ И МАГНИТНОЙ ПОЛЯРИЗУЕМОСТЕЙ ПРОТОНА И НЕЙТРОНА.

СТАТУС СОВМЕСТНОГО (ПИЯФ-ТУД) ЭКСПЕРИМЕНТА НА ЭЛЕКТРОННОМ УСКОРИТЕЛЕ (S-DALINAC) В ДАРМШТАДТЕ, ГЕРМАНИЯ. РОССИЙСКАЯ АКАДЕМИЯ НАУК ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ ИМ. Б.П.КОНСТАНГИНОВА

D.V. Balin, M.J. Borkowski, V.P. Chizhov, G.A. Kolomensky, E.M. Maev, D.M.Seliverstov, G.G. Semenchuk, Yu.V. Smirenin, A.A.Vasiliev, A.A. Vorobyov, N.Yu. Zaitsev

Compton Scattering on Protons: Project of Experimental Determination of Electric and Magnetic Polarizabilities of the Proton

ГАТЧИНА 1996

Электрическая и магнитная поляризуемости нуклона, α and β, являются фундаментальными характеристиками протонов и нейтронов. Они характеризуют способность нуклона деформироваться под воздействием внешнего электромагнитного поля.

 $d = \alpha E \qquad \mu = \beta B$ $\overline{\alpha} = 2 \sum_{n \neq N} \frac{|\langle n | D_z | N \rangle|^2}{E_n - E_N} + \Delta \alpha \equiv \alpha_0 + \Delta \alpha ,$ $\overline{\beta} = 2 \sum_{n \neq N} \frac{|\langle n | M_z | N \rangle|^2}{E_n - E_N} + \Delta \beta \equiv \beta_0 + \Delta \beta .$

Дифференциальное сечение Комптоновского рассеяния

$$\left[\frac{d\sigma(E_{\gamma},\theta)}{d\Omega}\right]_{\text{LET}} = \left[\frac{d\sigma(E_{\gamma},\theta)}{d\Omega}\right]_{\text{Powell}} - \rho + \mathcal{O}(E_{\gamma}^{4})$$

$$\rho = \frac{e^{2}}{4\pi m_{p}} \left(\frac{E_{\gamma'}}{E_{\gamma}}\right)^{2} \frac{E_{\gamma}E_{\gamma'}}{(\hbar c)^{2}} \times \left[\frac{\overline{\alpha} + \overline{\beta}}{2} \left(1 + \cos\theta\right)^{2} + \frac{\overline{\alpha} - \overline{\beta}}{2} \left(1 - \cos\theta\right)^{2}\right]$$

V. Olmos de Leon et al., Eur. Phys. J. A 10, 207 (2001).

Правило суми: $\alpha_p + \beta_p = 13.8 + - 0.4 [10^{-4} \text{ fm}^3]$

Поляризуемость протона: $\alpha_p = 11.9 + -0.5(\text{stat}) + -1.3(\text{syst}) + -0.3(\text{mod})$ $\beta_p = 1.2 + -0.7(\text{stat}) + -1.3(\text{syst}) + -0.3(\text{mod})$ Eur.Phys.J.A10,207 (Mainz,2001)

Поляризуемость нейтрона:

 $a_n = 12.5 + /-1.8(stat) + /-1.1(syst) + /-1.1(mod)$ $b_n = 2.7 + /-1.8(stat) + /-1.1(syst) + /-1.1(mod)$ Phys.Rev.Lett.88,162301(Mainz,2002)

 $\mathsf{E}_{\mathsf{p},\mathsf{d}}$ is measured with the help of the ionization chambers

Ускоритель и экспериментальный зал IKP TUD

Bremsstrahlung facility

Schematic view of the experimental setup

1 – bremsstrahlung converter, 2 – collimation system, 3 – electron beam dump, 4 – concrete shielding, 5 – hydrogen-filled ionization chambers, 6 – γ spectrometers, 7 – collimation system, 8 – position sensitive ionization chamber, Gaussian quantometer, γ beam dump, 9 – γ spectrometers

γ beam profile

Schematic top-view of the hydrogen-filled high-pressure ionization chambers

1, 6 – berillium windows, 2 – cleaning magnets, 3 – ionization chamber to measure γ - scattering on 90°, 4 – berillium windows, 5 – ionization chamber to measure γ - scattering on 130°

High-pressure (90 bar) hydrogen-filled ionization chambers at TUD

Anode-strips geometry (top view)

A signal on the anode of the ionization chamber from a recoil proton

Schematic view of a 10" x 14" Nal(TI) spectrometer

Nal(TI) spectrometer

Сечения γp - рассеяния d σ /d Ω (nb/sr)

COUNTING RATE INCREASE WITH THE NEW IC CHAMBER

	NEW IC	OLD IC	COUNTING RATE INCREASE
Target length	90 mm	60 mm	1.5
Target width	30 mm	20 mm	1.5
Target height	15 mm	10 mm	1.5

	NEW Nal-IC geometry	OLD Nal-IC geometry	COUNTING RATE INCREASE
IC to Nal distance	60 cm	110 cm	3.3
Horizontal Be windo	15 cm	10 cm	
Vertical Be windows	34 mm	20 mm	

TOTAL COUNTING RATE INCREASE ~ 10

Увеличение толщины ү-радиатора – увеличение интенсивности ү-пучка

BEAM TIME ESTIMATION

Minimum scenario:

 I_e = 3 µA, E_e = 60 MeV, T= 1000 h (6 weeks)

N_{γp}= 100 000 events, $\Delta \alpha \sim 0.6$, $\Delta \beta \sim 0.7$ (10⁻⁴ fm³)

Maximum scenario:

 I_e = 10 µA, E_e = 100 MeV, T= 1000 h (6 weeks)

 $N_{\gamma p}$ = 1000 000 events, $\Delta \alpha \sim 0.2$, $\Delta \beta \sim 0.3$ (10⁻⁴ fm³)

Bremsstrahlung spectrum of photons (E_=71 MeV)

Counts

Cathode-grid-anode geometry of the chambers (side view)

Maximum drift time is $\sim 3.5 \ \mu s$

Энергетический спектр фотонов, рассеянных на малый угол.

Ω

Drift-time distribution of signals from recoil protons

Drift velocity is $\sim 5 \text{ mm/}\mu\text{s}$

ТЕОРИЯ

Нерелятивистская кварковая модель: $\alpha_p \approx 6 \ 10^{-4} \ \text{fm}^3, \ \beta_p \approx 4 \ 10^{-4} \ \text{fm}^3$ Киральные кварковые модели: $\alpha_p \approx 8 \ 10^{-4} \ \text{fm}^3, \ \beta_p \approx 2 \ 10^{-4} \ \text{fm}^3$ Киральные солитонные модели: $\alpha_p \approx 13 \ 10^{-4} \ \text{fm}^3, \ \beta_p \approx -1 \ 10^{-4} \ \text{fm}^3$

Veto detector before the Nal spectrometer to exclude background from electrons (~5%)

- 1996 г. предложение о проведении эксперимента в ТУД
- 1999 г. Ті ІС в ІКР ТUD
- 2000 г. проблемы с камерой
- 2001 г. Fe IC в IKP TUD
- 2004 г. 1 день набора данных на пучке электронов 1µА
- 2006 г. диссертация Steffen Watzlawik
- 2004 г. начато изготовление камеры на 2 угла рассеяния
- 2005 г. новая камера в IKP TUD (с задержкой в 0.5 года) проблемы со сваркой и электродами
- 2006 г. набор данных в течение 1 недели на пучке 60 МэВ, 3 µА (набрано около 1000 событий)
- 2007 г. набор данных в течение 3 недель на пучке 70 МэВ, 1 µА (ускоритель работал неустойчиво,набрано около 250 событий)
- 2008 г. калибровка Nal спектрометра
- 2009 г. диссертация О. Евецки