Эксперимент OLYMPUS и форм факторы протона

С.Белостоцкий

Юбилейная Сессия ОФВЭ декабрь 23-26, 2013 1

Robert Hofstadter Nobel prize 1961

ep-elastic finite size of the proton R_p ~ 0.8 fm

Nucleon elastic form factors ...

- Fundamental quantities
- Defined in context of single-photon exchange
- Describe internal structure of the nucleons
- Related to spatial distribution of charge and magnetism
- Rigorous tests of nucleon models
- Determined by quark structure of the nucleon
- Role of orbital angular momentum and diquark correlation
- Ultimately calculable by Lattice-QCD
- Input to nuclear structure and parity violation experiments

50 years of ever increasing activity

- Tremendous progress in experiment and theory over last decade
- New techniques / polarization experiments
- Unexpected results

$$J_{p}^{\mu\nu} = e_{p}\overline{u}\left(k_{p}\right)\left[F_{1}(Q^{2})\gamma^{\mu} + \frac{1}{2M_{p}}F_{2}(Q^{2})i\sigma^{\mu\nu}q_{\nu}\right]u\left(k_{p}\right)$$

Unpolarized experiments /Rosenbluth separation $\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{Mott}} \cdot \frac{1}{\epsilon(1+\tau)} \Big[\epsilon G_{E}^{2}(Q^{2}) + \tau G_{M}^{2}(Q^{2}) \Big]$ $\tau = \frac{Q^{2}}{4M_{p}^{2}} \quad \epsilon = \frac{1}{1+2(1+\tau)\tan^{2}(\theta_{e}/2)} \quad 0 < \epsilon < 1$

Drastic disagreement !!

World unpolarized experiments

JLAB polarization experiments

Sensitive to TPE is beam charge asymmetry:

$$A^{\pm} = \frac{\sigma^{e^+p} - \sigma^{e^-p}}{\sigma^{e^+p} + \sigma^{e^-p}} = \frac{2\operatorname{Re}(M_{Born}M_{TPE}^*) + 2\operatorname{Re}(M_{e-bremstr}M_{p-bremstr}^*)}{|M_{Born}|^2 + \operatorname{QED}_{rad.cor.}^{even}} \simeq \frac{2\operatorname{Re}(M_{Born}M_{TPE}^*)}{|M_{Born}|^2}$$
$$\frac{\sigma^{e^+p}}{\sigma^{e^+p}} = \frac{1 - A^{\pm}}{1 + A^{\pm}}$$

4

Olympus experiment at Doris to measure $e^{+}p/e^{-}p$ cross section ratio as function of Q^{2}

OLYMPUS collaboration

- Arizona State University, USA
- DESY, Hamburg, Germany
- Hampton University, USA
- INFN Bari, Ferrara, and Rome, Italy
- MIT and MIT-Bates, USA
- Petersburg Nuclear Physics Institute, Russia
- University of Bonn, Germany
- University of Glasgow, United Kingdom
- University of Mainz, Germany
- University of New Hampshire, USA
- Yerevan Physics Institute, Armenia

Российские участники

ФРИП

С.Белостоцкий Г.Гаврилов Д.Веретенников А.Изотов А.Киселев А.Крившич О.Миклухо Ю.Нарышкин К.Суворов

ПИЯФ hardware contribution

12deg. Luminosity monitor
MWPCs 6 UXV modules, 1mm
with CROS-3 readout electronics
+ trigger scintillation counters
readout with SiPMs

Olympus detector

Olympus detector in parking position

12deg. Luminosity monitor

Target cell and open vacuum chamber

Symmetric Møller / BhaBha monitor **7**

Olympus timelines

2008 - 2012

0	Proposal	09/2008
0	Experiment funded	01/2010
0	Test experiment at Doris	02/2011
0	Setup installed	12/2011
0	Data taking Run I (1 mot	<i>nth</i>) 02/2012
0	Tests, preparation to Run	II,
	wire chambers upgrade	up to 10/2012
0	Data taking Run II	
	(2.5 month) u	up to mid 01/2013

2013 - 2014

0	End of data taking	01/2013
0	Doris shutdown	02/2013
0	Toroid magnetic field	
	measurements,	
	data analysis started	02/-03/2013
0	Setup survey and	
	disassembly	04/2013
0	100 runs (of 10 ⁴ runs)	
	tentatively analyzed	09/2013
0	NIM paper submitted	12/2013
0	Track reconstruction	
	finished, all runs	
	analyzed	04/2014
0	Systematic studies,	
	cross-checks	09/2014
0	Paper submitted	12/2014

epsilon

9

e⁺p or e⁻p coincidences of 12 deg. trigger, GEM+MWPC tracking

10

Symmetric Møller /Bhabha monitor

Raw yields of Q^2

- $\odot \approx 2\%$ of all data
- no acceptance 0 correction
- relative normalization fixed at small Q²
- Cuts on:
- yield [a u.] coplanarity 0
 - vertex z 0 difference
 - momentum 0 balance
 - proton 0 missing momentum

Caveat: WC tracking is still not finished !!

Outlook: PNPI in data analysis 2014

□ MC simulation e⁺ vs e⁻ systematics Ю.Нарышкин

□ Extraction of experimental charge asymmetry Д.Веретенников

□ 12deg. monitoring system data analysis Д.Веретенников

□ MC generator for pion production *K.Cybopob*

□ DESY analysis group coordination *С.Белостоцкий*

BACKUP SLIDES

Comparison of beam charge asymmetry experiments

	VEPP–3 Novosibirsk	OLYMPUS DESY	EG5 CLAS JLab	
beam energy	3 fixed	1 fixed	wide spectrum	
equality of e^{\pm} beam energy	measured	measured	reconstructed	
e^+/e^- swapping frequency	half-hour	8 hours	simultaneously	
e^+/e^- lumi monitor	elastic low-Q ²	elastic low-Q ² , Möller/Bhabha	from simulation	
energy of scattered e $^\pm$	EM-calorimeter	mag. analysis	mag. analysis	
proton PID	$\Delta E/E$, TOF	mag. analysis, TOF	mag. analysis, TOF	
e^+/e^- detector acceptance	identical	big difference	big difference	
luminosity	$1.0 imes 10^{32}$	$2.0 imes 10^{33}$	2.5×10^{32}	
beam type target type	storage ring internal H target	storage ring internal H target	secondary beam liquid H target	
data taken	2009, 2011-12	2012	2011	
Publications	preliminary	data analysis	data analysis	

VEPP-3 Novosibirsk experiment

A. Gramolin, Workshop on Radiative Corrections in Annihilation and Scattering Experiments, Orsay, October 7-8, 2013

• CLAS @ JLab experiment ($E_{beam} = 0.5 \div 4 \text{ GeV}$)

OLYMPUS at DORIS, DESY

Study of e⁺p,e⁻p elastic scattering in identical conditions @ 2 GeV

collimator **BPM1** BPM2 Hydrogen target region Target cell elliptical 9x16mm**2. length 60mm, $8 \cdot 10^{15}$ atoms \cdot cm⁻² Beam sizes 0.6x0.1mm**2

Doris storage ring 2-4.5 GeV 2 GeV e^+, e^- beams, 100 mA, change daily, Beam energy stability 0.5 MeV Beam position 0.1mm quasi continuous beam ("topup" mode)

JLAB Polarization Transfer Results

(V.Punjabi, C.F.Perdrisat, et al. Phys.Rev. C71, 2005)

disagreement with LT separation results

TABLE VI: The ratio $\mu_p G_{Ep}/G_{Mp} \pm$ statistical uncertainty (1 σ). Δ_{sys} is the systematic uncertainty from Table VII. \overline{Q}^2 and $\overline{\chi}_{\theta}$ are the weighted average four momentum transfer squared and spin precession angle, respectively. ΔQ^2 is half the Q^2 acceptance. The last column P_t/P_ℓ is the ratio of measured polarization components at the target, the relative uncertainty is the same as for $\mu_p G_{Ep}/G_{Mp}$.

$\overline{Q}^2 \pm \Delta Q^2$	$\overline{\chi}_{\theta}$	$\mu_p G_{Ep}/G_{Mp}$	Δ_{sys}	P_t/P_ℓ
(GeV^2)	(deg)	$(\pm \text{ stat. uncert.})$		
$0.49 {\pm} .04$	105	0.979 ± 0.016	0.006	-0.822
$0.79 {\pm} .02$	118	0.951 ± 0.012	0.010	-0.527
$1.18 {\pm} .07$	136	0.883 ± 0.013	0.018	-0.492
$1.48 {\pm}.11$	150	0.798 ± 0.029	0.026	-0.422
$1.77 \pm .12$	164	0.789 ± 0.024	0.035	-0.381
$1.88 {\pm} .13$	168	0.777 ± 0.024	0.033	-0.368
$2.13 \pm .15$	181	0.747 ± 0.032	0.034	-0.329
$2.47 \pm .17$	196	0.703 ± 0.023	0.033	-0.284
$2.97 \pm .20$	218	0.615 ± 0.029	0.021	-0.224
$3.47 \pm .20$	239	0.606 ± 0.042	0.014	-0.198

ç,

Estimation of TPE effect on LT and polarization data

- ✓ significant effect on LT separation results
- ✓ a few per cent effect on polarization data

P.G. Blunden et al., Phys. Rev. C 72, 034612 (2005)

FIG. 5: The ratio of proton form factors $\mu_p G_E/G_M$ measured using LT separation (open diamonds) [2] and polarization transfer (PT) (open circles) [5]. The LT points corrected for 2γ exchange are shown assuming a linear slope for $\varepsilon = 0.2 - 0.9$ (filled squares) and $\varepsilon = 0.5 - 0.8$ (filled circles) (offset for clarity).

FIG. 1. Two-photon exchange box and crossed box diagrams for elastic electron-proton scattering.

Radiative Corrections & TPE graphs

Contribution from two photon exchange diagram not taken into account in traditional analysis may be an explanation

Projected OLYMPUS uncertainties

Figure 1.12: Projected uncertainties in the determination of the cross section ratio e^+p/e^-p for the BLAST detector for a beam energy of 2.0 GeV, as a function of ϵ . The assumed luminosity is $2 \cdot 10^{33} / (\text{cm}^2 \text{s}) \times 500$ hours each for running with electrons and positrons, respectively.

Conclusion & outlook

Experiments designed to measure charge asymmetry at per cent level

Experiment	E _{beam} GeV	Luminosity cm ² sec ⁻¹	€ _{min}	Q ² GeV	Planned for	Challenge
VEPP-3	1.6	10 ³¹	0.4	0.1-1.76	2010- 2012	Low lumi
JLAB	5.7	1.3x10 ³³	0.2	0.5-2.1	2012- ??	High bgr level
Olympus	2	2.x10 ³³	0.4	2-3	2011- 2012	Continuation after 2012

FF DEFINITION.

FFs are defined in context of one photon exchange

poorly studied till now

$$\begin{aligned} \mathbf{q}_{0} &= 0 \rightarrow J_{p}^{\mu} = \mathbf{G}_{E}(Q^{2})\gamma^{\mu} + \mathbf{G}_{M}(Q^{2})\mathbf{i}\sigma^{\mu\nu}q_{\nu} \rightarrow \rho_{E,M}\left(\vec{x}\right) = \int \mathbf{G}_{E,M}\left(-q^{2}\right)e^{-i\vec{q}\cdot\vec{x}} d^{3}x \\ \mathbf{G}_{E}^{p}(0) &= 1 \quad \mathbf{G}_{E}^{n}(0) = 0 \qquad \mathbf{G}_{M}^{p}(0) = \mu_{p} \quad \mathbf{G}_{E}^{n}(0) = \mu_{n} \end{aligned}$$