LHCb collaboration

WELCOME

PNPI

Petersbourg Nuclear Physics Iinstitute *Russian Academy of Sciences*

Research directions

- High energy physics
- Nuclear physics
- Solid state physics
- Molecular biophysics
- Theoretical physics
- Nuclear medicine

Institute structure

- High energy physics division
- Neutron research division
- Microbiology division
- Theoretical physics division
- Infrastructure

Main research facilities

- 18 MW research nuclear reactor;
- 100 MW research nuclear reactor (to be completed in 2012);
- 1 GeV proton accelerator.

Total staff1600Research workers and engineers400

Research Nuclear Reactor WWR-M 18 MW

Research Nuclear Reactor PIK

Power: 100 MW Thermal neutron flux: 5·10¹⁵n/cm²sec 50 positions for neutron instruments

1 GeV proton synchrocyclotron

Nuclear physics Radiation studies Proton therapy Test beams

Beams: protons, neutrons, π -mesons, μ -mesons

Proton therapy 1 GeV proton beam

1327 patients clinical remission 85-100% Pituitary adenoma Asteriovenous malformation Arterial anevrisma

PNPI centre of nuclear medicine project

Isotope production and 4D (x,y,z,t) proton therapy

High current cyclotron,80 MeV & fast cycling synchrotron, 100-250 MeV

Experiments outside PNPI

- FNAL E715, E761, E7181, **DØ**
- **BNL PHENIX**
- **PSI** $-\mu CF$, MuCap
- DESY HERMES
- GSI exotic nucl. FAIR
- Juelich ANKE
- Mainz **y**p
- Bonn Yp
- Jyvaskyla ISOL
- ITEP πp

ILL (Grenoble) - τ_n

• CERN ISOLDE, L3, CMS, ATLAS, ALICE, LHCb Crystal collimation in LHC

The on-going experiments are in red

Support from engineering and electronics groups

This support helps to develop at PNPI new experimental methods and produce experimental equipment thus allowing participation in the outside experiments with important conceptual and technical contributions

PNPI contribution to joint experiments

Experiment PHENIX (BNL)

One of the two drift chambers for PHENIX central tracker designed and produced at PNPI

PHENIX magnet was fabricated in St.Petersburg under PNPI supervision

CMS Endcap muon system

- 120 six-layers Cathode Strip Chambers (500 000 anode wires)
- 11000- channels HV system
- Track finder for L0 muon trigger
- Anode FE chips

ATLAS

48 wheels with 150 000 straw-tubes produced at PNPI

Endcap Transition Radiation Tracker

ALICE

38 Cathode Pad Chambers for ALICE Muon system produced at PNPI 25% of the total number

PNPI in LHCb project

Transition from COBEX layout (Large Quadrupole followed by small dipole) to the present layout (one large Dipole). Initiated by PNPI team.

Principles of operation of the LHCb muon system (stand-alone trigger) A.Borkovsky, A.Tsaregorodsev, and A.Vorobyov LHC-B97-007 TRIG, 1997

Muon chamber technology (fast operating wire chambers with wire /cathode pads) Competition with two other technologies (thin-gap chambers and RPCs)

LHCb Muon system contains 5 muon stations M1,M2,M3,M4,M5 1380 muon chambers in total

660 four-layers muon chambers are produced at PNPI for region R4 in stations M2,M3,M4. (1.5 million of anode wires)

Also, 2000-channels HV system for LHCb muon system was designed and produced at PNPI Some recent physics results related to our conference topics

Neutron life time measurements with ultra cold neutrons

1986-1996 (ПИЯФ-ОИЯИ), реактор ВВР-М, Гатчина 2002-2004 (ПИЯФ-ОИЯИ-ILL), peaкmop ILL

V_{ud} and $\lambda = G_A/G_V$ from neutron decay

τ_n = 885.7(8) (PDG data)

τ_n^{PNPI} = 878.5(8) s PNPI data A.Serebrov et al

Full consistency with SM Neutron electric dipole moment experiments with ultra-cold neutrons

Test for CP violation in barion system

Standard Model prediction	$\sim 10^{-32} \mathrm{e}\cdot\mathrm{cm}$
SUSY	∼ n ∙ 10 ⁻²⁷
PNPI (1996)	< 1·10 ⁻²⁵
ILL (2006)	< 0.3 ·10 ⁻²⁵
PNPI project	$\sim 10^{-27}$

Muon Capture on Proton MuCAP experiment

$$\mu^{-} + p \rightarrow (\mu^{-}p)_{1S} \rightarrow \nu_{\mu} + n \quad BR=0.16\%$$

Goal: to measure μ p-capture rate Λ_s with $\leq 1\%$ precision

$$V_{\alpha} = g_{V}(q^{2}) \gamma_{\alpha} + \frac{i g_{M}(q^{2})}{2 M_{N}} \sigma_{\alpha\beta} q^{\beta}$$
$$A_{\alpha} = g_{A}(q^{2}) \gamma_{\alpha} \gamma_{5} + \frac{\mathbf{g}_{P}(q^{2})}{m_{\mu}} q_{\alpha} \gamma_{5}$$

$$p n$$

$$W q_c^2 = -0.88 m_{\mu}^2$$

$$\mu V_{\mu}$$

 $g_v = 0.9755(5)$ $g_M = 3.5821(25)$ $g_A = 1.245(4)$ $g_P = ?$ $g_P(\text{theory}) = 8.26 \pm 0.23$ All form factors at $q_c^2 = 0.88 m_{\mu}^2$

Muon capture offers a unique possibility to measure $g_P(q_c^2)$

MuCAP experiment

Hydrogen TPC develped at PNPI

theory prev. meas. MuCap G_P 8.26 ±0.23 12 - 2 6.95 ± 1.09 (10% statistics analyzed) So far, the MuCAP result is only 1 σ from Standard Model prediction

Volume reflection from monocrystals Experiment UA9 CERN 400 GeV protons

Thank you for your attention

our best wishes for success of the LHCb experiment