Model dependent and model independent considerations on two photon exchange

Egle Tomasi-Gustafsson IRFU, SPhN-Saclay, and IN2P3- IPN Orsay France

Plan

n r f u

С

Ί

- Introduction
 - Generalities
 - Model independent considerations
 - Space-like
 - Time-like
 - Model dependent considerations
 - What do data say?
 - Which alternative for GEp problem?
 - Conclusions

Two-Photon exchange

- 1γ-2γ interference is of the order of a=e2/4p=1/137 (in usual calculations of radiative corrections, one photon is 'hard' and one is 'soft')
- "Invent a mechanism" to enhance this contribution
- In the 70's it was shown [J. Gunion and L. Stodolsky, V.
 Franco, F.M. Lev, V.N. Boitsov, L. Kondratyuk and V.B.
 Kopeliovich, R. Blankenbecker and J. Gunion] that, at large momentum transfer, due to the sharp decrease of the FFs, if the momentum is shared between the two photons, the 2γ-contribution can become very large.
- The 2γ amplitude is expected to be mostly imaginary.
- In this case, the 1γ-2γ interference is more important in time-like region, as the Born amplitude is complex.

Qualitative estimation of 2γ exchange *For ed elastic scattering:* **n**lrfu $\mathcal{M}_1 = \alpha F_d(t).$ (e)saclay $\mathcal{M}_2 = \alpha^2 F_N^2 \left(\frac{t}{\Lambda}\right).$ From quark counting rules: $Fd \sim t-5$ and $FN \sim t-2$. At t = 4GeV2 $\frac{\mathcal{M}_2}{\mathcal{M}_1} = \frac{\alpha F_N^2}{F_d(t)} = 256 \frac{\alpha t}{m_x^2}$ $\frac{\mathcal{M}_2}{\mathcal{M}_1} \simeq 1500 \ \alpha \to 10!$ $t/m_r^2 \simeq 6$ For d, 3He, 4He, 2γ effect should appear at ~ 1 GeV2, $\sim 10 \ GeV2$ for protons

C Nİ

Two-Photon exchange in ed-scatterng

- **n**lrfu
- saclay

- Discrepancy between the results from
 Hall A [L.C. Alexa et al., P.R.L. 82, 1374 (1999)]
 - Hall C [D. Abbott et al., P.R.L. . 82, 1379 (1999)].
- Model-independent parametrization of the 2γ– contribution.
- Applied to *ed*-elastic scattering data.

M. P. Rekalo, E. T-G and D. Prout, Phys. Rev. C60, 042202 (1999)

Crossing Symmetry

3

С

The 1γ-2γ interference destroys the linearity of the Rosenbluth plot!

What about data?

M. P. Rekalo, E. T-G and D. Prout, Phys. Rev. C60, 042202 (1999)

Parametrization of 2*γ***-contribution for e+p**

 $\sigma^{red}(Q^2 C \textit{lighteze} \beta \tilde{Q}_{\textit{M}} Q^2 \delta \textit{difield} \tilde{Q}_{\textit{M}} \delta difield \tilde{Q}_{M$

e+4He scattering

G.I Gakh, and E. T.-G., Nucl. Phys. A838 (2010) 50-60

Spin O particle: F(q2) in Born approximation **n**lrfu $\left|\frac{d\sigma_{un}^{Born}}{d\Omega} = \frac{\alpha^2 \cos^2 \frac{\theta}{2}}{4E^2 \sin^4 \frac{\theta}{2}} \left|1 + 2\frac{E}{M} \sin^2 \frac{\theta}{2}\right| F^2(q^2),$ saclay 2γ exchange : F1(s,q2),F2(s,q2)=F(q2) +f(s,q2) $F(q2) \sim \alpha 0, F1(s,q2) \sim \alpha F_1^{Born}(s,q^2) = 0, F_2^{Born}(s,q^2) = F(q^2),$ $\frac{d\sigma_{un}}{d\Omega} = \frac{\alpha^2 \cos^2 \frac{\theta}{2}}{4E^2 \sin^4 \frac{\theta}{2}} \left[1 + 2\frac{E}{M} \sin^2 \frac{\theta}{2} \right]^{-1} \left\{ F^2(q^2) + 2F(q^2)Re \ f(s,q^2) + |f(s,q^2)|^2 + \frac{1}{2} F(q^2) $+\frac{m^2}{M^2}\left[\frac{M}{E} + (1+\frac{M}{E})\tan^2\frac{\theta}{2}\right]F(q^2)ReF_1(s,q^2)\bigg\}.$ a C

Linear fit to e+4He elastic scattering

G.I Gakh, and E. T.-G., Nucl. Phys. A838 (2010) 50-60

2

Interaction of 4 spin ½ fermions

16 amplitudes in the general case. ≻P- and T-invariance of EM

interaction,
 PN > helicity conservation,

- One-photon exchange:
 - Two form factors (real in SL, complex in TL)
 - Functions of one variable (t)
 - Two-photon exchange:
 - Three (complex) amplitudes
 - Functions of two variables (s,t)

n r f u

Space-like region

Possible but difficult!

n r f u saclay

Model independent considerations for et N scattering

<u>Determination of EM form factors</u>, <u>in presence of 2γ exchange:</u>

-electron and positron beams

- longitudinally polarized ,
- in identical kinematical conditions,

M. P. Rekalo, E. T.-G., EPJA (2004), Nucl. Phys. A (2003)

: :/	Model indep	endent considerations for								
)	Determination of EM form factors, in presence of									
n r f u CEO saclay	<u>2g exchange</u>	- electron and positron beams, - longitudinally polarized , - in identical kinematical conditions,								
	$\frac{d\sigma^{(-)}}{d\Omega_e} + \frac{d\sigma^{(+)}}{d\Omega_e}$	$= 2\sigma_0 \mathcal{N} = 2\sigma_0 \left[\epsilon G_E^2(Q^2) + \tau G_M^2(Q^2) \right],$								
)	$\frac{1}{2}\mathcal{N}(P_x^{(+)} + P_x^{(-)})$	$= -\lambda_e \sqrt{2\epsilon(1-\epsilon)\tau} G_E(Q^2) G_M(Q^2),$								
	$\frac{1}{2}\mathcal{N}(P_z^{(+)} + P_z^{(-)})$	$= \lambda_e \tau \sqrt{(1-\epsilon^2)} G_M^2(Q^2),$								
Generalization of the polarization method										
c (A. Ak ni	thiezer and M.P. Rek M.P. M.P.	alo) Rekalo and E. T-G Nucl. Phys. A740 (2004) 271, Rekalo and E. T-G Nucl. Phys. A742 (2004) 322								

If no positron beam...

Either three T-odd polarization observables....

nlrfu

• Ay: unpolarized leptons, transversally polarized target or

- *Py:* outgoing nucleon polarization with unpolarized leptons, unpolarized target
- Depolarization tensor (Dab): dependence of the b-component of the final nucleon polarization on the a-component of the nucleon target with longitudinally polarized leptons

M. P. Rekalo and E. T-G Nucl. Phys. A740 (2004) 271, M. P. Rekalo and E. T-G Nucl. Phys. A742 (2004) 322

If no positron beam... Either three T-odd polarization observables.... **n**lrfu CEO . sacla $\mathcal{N}P_y = \mathcal{N}A_y = \sqrt{2\epsilon\tau(1+\epsilon)\mathcal{I}_3(Q^2,\epsilon)} + \sqrt{2\epsilon(1-\epsilon)(1+\tau)\mathcal{I}_1(Q^2,\epsilon)},$ t Mark $\mathcal{N}D_{xy}(\lambda_e) = \mathcal{N}D_{yx}(\lambda_e) = 2\lambda_e \epsilon \sqrt{\tau(1+\tau)\mathcal{I}_2(Q^2,\epsilon)},$ $\mathcal{N}D_{yz}(\lambda_e) = -\mathcal{N}D_{zy}(\lambda_e) = \lambda_e \sqrt{2\epsilon(1+\tau)(1+\epsilon)\mathcal{I}_1(Q^2,\epsilon)},$ ้ร $\mathcal{I}_1(Q^2,\epsilon) = Im G_E(Q^2) \mathcal{A}(Q^2,\epsilon), \ \mathcal{I}_2(Q^2,\epsilon) = Im G_M(Q^2) \mathcal{A}(Q^2,\epsilon),$ $\mathcal{I}_3(Q^2,\epsilon) = Im G_E(Q^2,\epsilon) G_M^*(Q^2,\epsilon).$ $\mathcal{R}_{EM}(Q^2) = \frac{\mathcal{I}_1(Q^2, \epsilon)}{\mathcal{I}_2(Q^2, \epsilon)} = \frac{G_E(Q^2)}{G_M(Q^2)}$ M. P. Rekalo and E. T-G Nucl. Phys. A740 (2004) 271,

M. P. Rekalo and E. T-G Nucl. Phys. A742 (2004) 322

If no positron beam...

This ratio contains the 'TRUE 'form factors!

nlrfu

saclay

С

$$\mathcal{R}_{EM}(Q^2) = \frac{\mathcal{I}_1(Q^2, \epsilon)}{\mathcal{I}_2(Q^2, \epsilon)} = \frac{G_E(Q^2)}{G_M(Q^2)}$$
$$\mathcal{R}_{EM}(Q^2) = -\frac{\lambda_e}{D_{xy}(\lambda_e)} \left[P_y + \sqrt{\frac{1+\epsilon}{1-\epsilon}} \frac{D_{zy}(\lambda_e)}{\lambda_e} \right] \sqrt{\frac{1-\epsilon}{2\epsilon}\tau}.$$

Very difficult experiments Three T-odd polarization observables.... Expected small, of the order of a, triple spin correlations

but... Model independent way

r f u saclay

If no positron beam...

Either three T-odd polarization observables.... ..or five T-even polarization observables.... among $d\sigma/d\Omega$, $Px(\lambda e)$, $Pz(\lambda e)$, Dxx, Dyy, Dzz, Dxz

nyum very un ricun experiments

Only Model independent ways (without positron beams) M. P. Rekalo and E. T-G Nucl. Phys. A740 (2004) 271,

M. P. Rekalo and E. T-G Nucl. Phys. A742 (2004) 322

n r f u

Is it still possible to extract the « real » FFs in presence of 2γexchange?

Time-like region

much easier!

Time-like observables: | GE| 2 and | GM| 2

A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Il Nuovo Cimento XXIV, 170 (1962)
B. Bilenkii, C. Giunti, V. Wataghin, Z. Phys. C 59, 475 (1993).
G. Gakh, E.T-G., Nucl. Phys. A761,120 (2005).

As in SL region:

- Dependence on q2 contained in FFs
- Even dependence on $\cos 2\theta$ (1 γ exchange)
- No dependence on sign of FFs
- Enhancement of magnetic term

but TL form factors are complex!

5

С

M.P. Rekalo and E. T.-G., EPJA 22, 331 (2004) G.I. Gakh and E. T.-G., NPA761, 120 (2005)

Symmetry relations

nlrfu

saclay

•Based on these properties one can remove or single out TPE contribution

E. T.-G., G. Gakh, NPA (2007)

С

Symmetry relations (annihilation)

• Differential cross section at complementary angles:

The SUM cancels the 2γ contribution:

$$\frac{d\sigma_+}{d\Omega}(\theta) = \frac{d\sigma}{d\Omega}(\theta) + \frac{d\sigma}{d\Omega}(\pi - \theta) = 2\frac{d\sigma^{Born}}{d\Omega}(\theta)$$

The DIFFERENCE enhances the 2γ contribution:

$$\frac{d\sigma_{-}}{d\Omega}(\theta) = \frac{d\sigma}{d\Omega}(\theta) - \frac{d\sigma}{d\Omega}(\pi - \theta) = 4N \left[(1 + x^2) ReG_M \Delta G_M^* + \frac{1 - x^2}{\tau} ReG_E \Delta G_E^* + \sqrt{\tau(\tau - 1)} x (1 - x^2) Re(\frac{1}{\tau} G_E - G_M) F_3^* \right]$$
$$\tau = \frac{q^2}{4m^2}, \quad x = \cos\theta$$

y/

S

3

C Nİ

What do data say?

B. Aubert (BABAR Collaboration) Phys Rev. D73, 012005 (2006)

Angular distribution

2γ-exchange?

E. T-G. and M. P. Rekalo, Phys. Lett. B 504, 291 (2001)

С

Fitting the angular distributions...

1 γ exchange:

 \rightarrow Linear Fit in $\cos 2\theta$

$$y = a_0 + a_1 x$$
 with $x = \cos^2 \theta$, $a_0 = \sigma_0$, $a_1 = \sigma_0 \mathcal{A}$

$2 \gamma exchange \rightarrow Quadratic Fit in x = cos \theta$

$$y = a_0 + a_2 x + a_1 x^2$$
$$a_2 = \frac{2\sqrt{\tau(\tau - 1)}(G_E - \tau G_M)F_3}{\tau |G_M|^2 + |G_E|^2}$$

E. T-G. and M. P. Rekalo, Phys. Lett. B 504, 291 (2001)

=

1/

S

3

C Nİ

Which alternative for Gep?

PRL 94, 142301 (2005)

Precision Rosenbluth Measurement of the Proton Elastic Form Factors

E.T-G, Phys. Part. Nucl. Lett. 4, 281 (2007)

Reduced cross section and RC

C.F. Perdrisat,, Progr. Part. Nucl. Phys. 59,694 (2007)

Experimental correlation

Polarization ratio (E-dependence)

• SF method: ε-independent corrections

Theory: corrections to the Born approximation at Q2=2.5 GeV2

Y. Bystritskiy, E.A. Kuraev and E.T.-G, Phys.Rev.C75: 015207 (2007)

P. Blunden et al., Phys. Rev. C72:034612 (2005) (mainly GM)

A. Afanasev et al., Phys. Rev. D72:013008 (2005) (mainly GE)

N.Kivel and M.Vanderhaeghen, Phys. Rev. Lett.103:092004 (2009). (high Q2)

Summary

<u>Our Suggestion for search of 2y effects:</u>

- Search for model independent statements (M.P. Rekalo, G. Gakh..)
- Exact calculation in frame of QED ($p \sim \mu$)
- Prove that QED box is upper limit of QCD box diagram
- Study analytical properties of the Compton amplitude
- Compare to experimental data

nlrfu

Œ

saclay

- <u>Our Conclusions for elastic ep scattering</u>
 - Two photon contribution is negligible (real part) (E.A. Kuraev)
 - Radiative corrections are huge: take into account higher order effects (Structure Functions method)) (Yu. Bystricky)

Look for Multiple Photon Exchange in e-A scattering

• Small angle e, or p or pbar - Heavy ion scattering E.A. Kuraev, M. Shatnev, E.T-G., PRC80 (2009) 018201

<u>2γ effects are expected to be larger in TL region</u> (complex nature)

The Pauli and Dirac Form Factors $k_{\mu}^{*} = (E_{e}^{*}, \vec{k}^{*})$ $j_{\mu}^{*} = \langle e^{i} | \gamma_{\mu} | e \rangle$ $k_{\mu}^{*} = (E_{e}, \vec{k})$ $k_{\mu}^{*} = (E_{e}, \vec{k})$ $k_{\mu}^{*} = (E_{e}, \vec{k})$

The electromagnetic current in terms of the Pauli and Dirac FFs:

$$\Gamma_{\mu}(p',p) = \underbrace{F_1(Q^2)}_{Dirac} \gamma_{\mu} + \frac{i\kappa_p}{2M_p} \underbrace{F_2(Q^2)}_{Pauli} \sigma_{\mu\nu} q^{\nu}$$

Related to the Sachs FFs :

$$G_E(Q^2) = \mathbf{F_1}(Q^2) - \kappa_p \frac{Q^2}{4M_p^2} \mathbf{F_2}(Q^2)$$
$$G_M(Q^2) = \mathbf{F_1}(Q^2) + \kappa_p \mathbf{F_2}(Q^2)$$

Normalization $F1p(0)=1, F2p(0)=\kappa p$ GEp(0)=1, $GMp(0)=\mu p=2.79$

Systematics

Differential cross section (SF)

$$|\bar{p}(p_{-}) + p(p_{+}) \rightarrow e_{+}(y_{+}) + e_{-}(y_{-}) + (\gamma(k))|$$
Energy fractions of the leptons

$$\frac{d\sigma}{dcdy_{+}dy_{-}} = \int dx_{+}dx_{-}\mathcal{D}(x_{+}, L_{s})\mathcal{D}(x_{-}, L_{s})$$

$$\times \frac{d\sigma_{B}(x_{-}p_{-}, x_{+}p_{+}, z_{+}, z_{-})}{dc} \frac{1}{|\Pi(sx_{+}x_{-})|^{2}}$$

$$\times \left(1 + \frac{d}{\pi}K\right) \frac{1}{z_{+}z_{-}} \mathcal{D}\left(\frac{y_{+}}{z_{+}}, L_{e}\right) \qquad Partition function$$

$$\times \mathcal{D}\left(\frac{y_{-}}{z_{-}}, L_{e}\right) + \left(\frac{d\sigma}{dc}\right)^{\text{odd}}, \qquad Odd term$$

The structure function of the lepton $\mathcal{D}(x,L) = \frac{1}{2}b(1-x)^{(b/2)-1}\left(1+\frac{3b}{8}\right)$ $b = \frac{2\alpha}{\pi}(L-1).$ $-\frac{1}{4}b(1+x) + O(b^2),$

5

3

Charge Asymmetry

$$A(c) = \frac{d\sigma(c) - d\sigma(-c)}{d\sigma(c) + d\sigma(-c)} = \frac{\alpha}{\pi} \frac{F(c)}{1 + c^2}$$

K-factor (hard)

3

of the order of one
 from the even part of the cross section

С

Ί

QED versus QCD

» Cinquième niveau

Interference of $1\gamma \otimes 2\gamma$ exchange

1 r f u

saclay

- •Explicit calculation for structureless proton
 - The contribution is small, for unpolarized and polarized ep scattering
 - Does not contain the enhancement factor L
 - The relevant contribution to K is ~ 1
- eµ (elastic) scattering is upper limit for ep

E.A.Kuraev, V. Bytev, Yu. Bystricky, E.T-G, Phys. Rev. D74 013003 (1076)

 $2\gamma 0.02$

0.05

0.20

$N=a0+a2\cos\theta\sin\theta+a1\cos2\theta$, $a2\sim2\gamma$

=

1/

С ni

-	a ²	case	<i>a</i> ₀		<i>П</i> .2	v^2	v^2/N_e	\mathcal{R}	4
)	$(C_{\alpha}V^{2})$	cabe	20		<i>w</i> ₂	~	λ /1'f	10	51
n lrfu	(Gev-)								
	5.4		46798 ± 182		9927 ± 485	1.94	0.11	$1/00\pm0.017$	0.21 ± 0.01
			46713 ± 182		9926 ± 485	1.45	0.09	0.997 ± 0.017	0.21 ± 0.01
		$2\gamma \cdot 0.05$	46714 ± 182	662 ± 240	9924 ± 485	1.47	0.09	0.998 ± 0.017	0.21 ± 0.01
		$2\gamma \cdot 0.20$	46710 ± 182	3398 ± 240	9933 ± 485	1.13	0.07	0.997 ± 0.017	0.21 ± 0.01
INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY	8.2		2832 ± 30		1128 ± 85	3.66	0.22	1.001 ± 0.095	0.398 ± 0.030
S			2833 ± 29		1130 ± 85	3.78	0.22	1.000 ± 0.095	0.399 ± 0.030
;		$2\gamma \cdot 0.05$	2830 ± 30	163 ± 42	1136 ± 85	3.49	0.21	0.998 ± 0.096	0.401 ± 0.030
)		$2\gamma \cdot 0.20$	2842 ± 30	805 ± 42	1106 ± 84	6.54	0.38	1.012 ± 0.092	0.389 ± 0.030
	13.84		85 ± 5		39 ± 19	4.49	0.26	1.149 ± 1.09	0.469 ± 0.230
			86 ± 5		41 ± 19	3.36	0.19	1.133 ± 1.116	0.481 ± 0.228
5		$2\gamma \cdot 0.05$	86 ± 5	16 ± 9	41 ± 19	3.67	0.22	1.137 ± 1.107	0.478 ± 0.228
C		$2\gamma \cdot 0.20$	82 ± 5	59 ± 9	55 ± 18	2.12	0.12	0.848 ± 2.121	0.672 ± 0.233