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Elastic electron-proton scattering

Differential cross section for elastic ep -scattering is given by the Rosenbluth formula:

dσRos
dΩ`

=

[
G 2

E (Q2) + τG 2
M(Q2)

1 + τ
+ 2τG 2

M(Q2) tg2 θ`
2

]
dσMott

dΩ`
,

dσMott

dΩ`
=

α2

4E 2
`

cos2 (θ`/2)

sin4 θ`/2

E ′`
E`
,

where τ = Q2/(4M2), Q2 = 2M(E` − E ′`), dσMott/dΩ` — Mott cross section,
GE (Q2) and GM(Q2) — electric and magnetic form factors of the proton.

GE and GM are functions of the 4-momentum transfer squared (Q2) only and
describe the distributions of charge and magnetic moment inside the proton.

Introducing the variable ε (virtual photon polarization)

ε =

[
1 + 2(1 + τ) tg2 θ`

2

]−1

,

the Rosenbluth formula can be written as follows:

dσRos
dΩ`

=
1

ε(1 + τ)

[
εG 2

E (Q2) + τG 2
M(Q2)

]
=

σred
ε(1 + τ)

,

where σred (reduced cross section) is a linear function of ε if Q2 = const.
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The proton’s form factors, two methods of measuring

σred = ε(1 + τ)
dσ

dΩ`
= εG 2

E + τG 2
M

�
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Rosenbluth method

It consists in measuring of dσ/dΩ` for
fixed Q2, but with different E`, θ`.
⇒ Dipole formula for GE and GM :

GE (Q2) ≈
(

1 +
Q2

0.71 GeV2

)−2

,

GM(Q2) ≈ µGE (Q2).

Polarization transfer method

(Akhiezer and Rekalo, 1968)

The ratio GE/GM is proportional to
the ratio of transverse PT and longi-
tudinal PL polarization components of
the recoil proton in reaction ~ep → e′~p′:

GE

GM
= −PT

PL

E` + E ′`
2M

tg
θ

2
.
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Born cross section and radiative corrections of order α3

“Elastic” scattering (e±p → e±p):

MBorn

M2γ Mvac M`
vert Mp

vert

Bremsstrahlung (e±p → e±p γ):

∆ ∆

M`
brem Mp

brem M∆

σ(e±p) = |MBorn|2

± 2 Re
(
M†BornM2γ

)
+

+ 2 Re
(
M†BornMvac

)
+ 2 Re

(
M†BornM

`
vert

)
+ 2 Re

(
M†BornM

p
vert

)
+

+ |M`
brem|2 + |Mp

brem|
2 ± 2 Re

(
M`†

bremM
p
brem

)
± 2 Re

(
M`†

bremM∆

)
+ . . .

X Cancellation of infrared divergences (corresponding terms are marked in color)
X Some of the terms are of different signs (“±”) for e+p and e−p scattering

Alexander Gramolin (Budker INP) OLYMPUS Symposium PNPI, July 10, 2012 4 / 20



Born cross section and radiative corrections of order α3

“Elastic” scattering (e±p → e±p):

MBorn M2γ

Mvac M`
vert Mp

vert

Bremsstrahlung (e±p → e±p γ):

∆ ∆

M`
brem Mp

brem M∆

σ(e±p) = |MBorn|2 ± 2 Re
(
M†BornM2γ

)

+

+ 2 Re
(
M†BornMvac

)
+ 2 Re

(
M†BornM

`
vert

)
+ 2 Re

(
M†BornM

p
vert

)
+

+ |M`
brem|2 + |Mp

brem|
2 ± 2 Re

(
M`†

bremM
p
brem

)
± 2 Re

(
M`†

bremM∆

)
+ . . .

X Cancellation of infrared divergences (corresponding terms are marked in color)
X Some of the terms are of different signs (“±”) for e+p and e−p scattering

Alexander Gramolin (Budker INP) OLYMPUS Symposium PNPI, July 10, 2012 4 / 20



Born cross section and radiative corrections of order α3

“Elastic” scattering (e±p → e±p):

MBorn M2γ Mvac

M`
vert Mp

vert

Bremsstrahlung (e±p → e±p γ):

∆ ∆

M`
brem Mp

brem M∆

σ(e±p) = |MBorn|2 ± 2 Re
(
M†BornM2γ

)
+

+ 2 Re
(
M†BornMvac

)

+ 2 Re
(
M†BornM

`
vert

)
+ 2 Re

(
M†BornM

p
vert

)
+

+ |M`
brem|2 + |Mp

brem|
2 ± 2 Re

(
M`†

bremM
p
brem

)
± 2 Re

(
M`†

bremM∆

)
+ . . .

X Cancellation of infrared divergences (corresponding terms are marked in color)
X Some of the terms are of different signs (“±”) for e+p and e−p scattering

Alexander Gramolin (Budker INP) OLYMPUS Symposium PNPI, July 10, 2012 4 / 20



Born cross section and radiative corrections of order α3

“Elastic” scattering (e±p → e±p):

MBorn M2γ Mvac M`
vert

Mp
vert

Bremsstrahlung (e±p → e±p γ):

∆ ∆

M`
brem Mp

brem M∆

σ(e±p) = |MBorn|2 ± 2 Re
(
M†BornM2γ

)
+

+ 2 Re
(
M†BornMvac

)
+ 2 Re

(
M†BornM

`
vert

)

+ 2 Re
(
M†BornM

p
vert

)
+

+ |M`
brem|2 + |Mp

brem|
2 ± 2 Re

(
M`†

bremM
p
brem

)
± 2 Re

(
M`†

bremM∆

)
+ . . .

X Cancellation of infrared divergences (corresponding terms are marked in color)
X Some of the terms are of different signs (“±”) for e+p and e−p scattering

Alexander Gramolin (Budker INP) OLYMPUS Symposium PNPI, July 10, 2012 4 / 20



Born cross section and radiative corrections of order α3

“Elastic” scattering (e±p → e±p):

MBorn M2γ Mvac M`
vert Mp

vert

Bremsstrahlung (e±p → e±p γ):

∆ ∆

M`
brem Mp

brem M∆

σ(e±p) = |MBorn|2 ± 2 Re
(
M†BornM2γ

)
+

+ 2 Re
(
M†BornMvac

)
+ 2 Re

(
M†BornM

`
vert

)
+ 2 Re

(
M†BornM

p
vert

)

+

+ |M`
brem|2 + |Mp

brem|
2 ± 2 Re

(
M`†

bremM
p
brem

)
± 2 Re

(
M`†

bremM∆

)
+ . . .

X Cancellation of infrared divergences (corresponding terms are marked in color)
X Some of the terms are of different signs (“±”) for e+p and e−p scattering

Alexander Gramolin (Budker INP) OLYMPUS Symposium PNPI, July 10, 2012 4 / 20



Born cross section and radiative corrections of order α3

“Elastic” scattering (e±p → e±p):

MBorn M2γ Mvac M`
vert Mp

vert

Bremsstrahlung (e±p → e±p γ):

∆ ∆

M`
brem Mp

brem M∆

σ(e±p) = |MBorn|2 ± 2 Re
(
M†BornM2γ

)
+

+ 2 Re
(
M†BornMvac

)
+ 2 Re

(
M†BornM

`
vert

)
+ 2 Re

(
M†BornM

p
vert

)

+

+ |M`
brem|2 + |Mp

brem|
2 ± 2 Re

(
M`†

bremM
p
brem

)
± 2 Re

(
M`†

bremM∆

)
+ . . .

X Cancellation of infrared divergences (corresponding terms are marked in color)
X Some of the terms are of different signs (“±”) for e+p and e−p scattering

Alexander Gramolin (Budker INP) OLYMPUS Symposium PNPI, July 10, 2012 4 / 20



Born cross section and radiative corrections of order α3

“Elastic” scattering (e±p → e±p):

MBorn M2γ Mvac M`
vert Mp

vert

Bremsstrahlung (e±p → e±p γ):

∆ ∆

M`
brem

Mp
brem M∆

σ(e±p) = |MBorn|2 ± 2 Re
(
M†BornM2γ

)
+

+ 2 Re
(
M†BornMvac

)
+ 2 Re

(
M†BornM

`
vert

)
+ 2 Re

(
M†BornM

p
vert

)
+

+ |M`
brem|2

+ |Mp
brem|

2 ± 2 Re
(
M`†

bremM
p
brem

)
± 2 Re

(
M`†

bremM∆

)
+ . . .

X Cancellation of infrared divergences (corresponding terms are marked in color)
X Some of the terms are of different signs (“±”) for e+p and e−p scattering

Alexander Gramolin (Budker INP) OLYMPUS Symposium PNPI, July 10, 2012 4 / 20



Born cross section and radiative corrections of order α3

“Elastic” scattering (e±p → e±p):

MBorn M2γ Mvac M`
vert Mp

vert

Bremsstrahlung (e±p → e±p γ):

∆ ∆

M`
brem Mp

brem

M∆

σ(e±p) = |MBorn|2 ± 2 Re
(
M†BornM2γ

)
+

+ 2 Re
(
M†BornMvac

)
+ 2 Re

(
M†BornM

`
vert

)
+ 2 Re

(
M†BornM

p
vert

)
+

+ |M`
brem|2 + |Mp

brem|
2 ± 2 Re

(
M`†

bremM
p
brem

)

± 2 Re
(
M`†

bremM∆

)
+ . . .

X Cancellation of infrared divergences (corresponding terms are marked in color)
X Some of the terms are of different signs (“±”) for e+p and e−p scattering

Alexander Gramolin (Budker INP) OLYMPUS Symposium PNPI, July 10, 2012 4 / 20



Born cross section and radiative corrections of order α3

“Elastic” scattering (e±p → e±p):

MBorn M2γ Mvac M`
vert Mp

vert

Bremsstrahlung (e±p → e±p γ):

∆ ∆

M`
brem Mp

brem M∆

σ(e±p) = |MBorn|2 ± 2 Re
(
M†BornM2γ

)
+

+ 2 Re
(
M†BornMvac

)
+ 2 Re

(
M†BornM

`
vert

)
+ 2 Re

(
M†BornM

p
vert

)
+

+ |M`
brem|2 + |Mp

brem|
2 ± 2 Re

(
M`†

bremM
p
brem

)
± 2 Re

(
M`†

bremM∆

)
+ . . .

X Cancellation of infrared divergences (corresponding terms are marked in color)
X Some of the terms are of different signs (“±”) for e+p and e−p scattering

Alexander Gramolin (Budker INP) OLYMPUS Symposium PNPI, July 10, 2012 4 / 20



Born cross section and radiative corrections of order α3

“Elastic” scattering (e±p → e±p):

MBorn M2γ Mvac M`
vert Mp

vert

Bremsstrahlung (e±p → e±p γ):

∆ ∆

M`
brem Mp

brem M∆

σ(e±p) = |MBorn|2 ± 2 Re
(
M†BornM2γ

)
+

+ 2 Re
(
M†BornMvac

)
+ 2 Re

(
M†BornM

`
vert

)
+ 2 Re

(
M†BornM

p
vert

)
+

+ |M`
brem|2 + |Mp

brem|
2 ± 2 Re

(
M`†

bremM
p
brem

)
± 2 Re

(
M`†

bremM∆

)
+ . . .

X Cancellation of infrared divergences (corresponding terms are marked in color)
X Some of the terms are of different signs (“±”) for e+p and e−p scattering

Alexander Gramolin (Budker INP) OLYMPUS Symposium PNPI, July 10, 2012 4 / 20



Asymmetry A and ratio R for the cross sections

A =
σ(e+p)− σ(e−p)

σ(e+p) + σ(e−p)
R =

σ(e+p)

σ(e−p)

How are they related?

A =
R − 1

R + 1
≈ R − 1

2
R =

1 + A

1− A
≈ 1 + 2A

After taking into account the radiative corrections:

A ≈ 2
Re
(
M†BornM2γ

)
|MBorn|2

R ≈ 1 + 4
Re
(
M†BornM2γ

)
|MBorn|2

How to take into account the radiative corrections?

A = Aexp − AMC

(exp = experimental,

MC = Monte Carlo)

R =
RexpRMC + 3Rexp − RMC + 1

RexpRMC − Rexp + 3RMC + 1

R ≈ Rexp − RMC + 1

The asymmetry is more natural, but the ratio is used more often.
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Radiative corrections in single arm experiments

To select elastic events the following condition is commonly used:

E ′ > E ′elast(E , θ`)−∆E , where E ′elast(E , θ`) =
ME

M + E (1− cos θ`)
.

Or another condition:

W 2 < W 2
cut, where W 2 = M2 + 2M(E − E ′)− 4EE ′ sin2 θ`

2
,

and W 2 is the missing mass squared. Typically used value is W 2
cut = 1.1÷1.15 GeV2

(and W 2 = M2 = 0.88 GeV2 in the case of purely elastic scattering). It is easy to
express ∆E through W 2

cut:

∆E =
W 2

cut −M2

2M + 4E sin2 (θ`/2)
.
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Radiative corrections in single arm experiments

When only electron is detected (so we are measuring its energy E ′ and scattering
angle θ`) the procedure of elastic scattering event selection can be described with
a single parameter ∆E . Then the following simple formula is used for taking into
account the radiative corrections:

dσexp
dΩ`

=
[
1 + δvirt + δbrem(∆E )

]dσRos
dΩ`

.

In this case, integration over kinematic parameters of recoil proton and bremsstrahlung
photon can be done analytically (using some approximations). Then theorists write
in their papers simple formulas for experimentalists to calculate δvirt and δbrem from
E , E ′, θ` and ∆E .

The main theoretical works about radiative corrections for such experiments:

Yung-Su Tsai, Phys. Rev. 122 (1961) 1898.
L.W. Mo, Y. S. Tsai, Rev. Mod. Phys. 41 (1969) 205.
L. C. Maximon, J. A. Tjon, Phys. Rev. C 62 (2000) 054320.

Formulas of Mo & Tsai was a standart recipe for taking into account RC during a
few decades (and are still in use)!
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Comparison between Mo–Tsai and Maximon–Tjon
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Comparison between Mo–Tsai and Maximon–Tjon
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«
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«–
,

Φ(x) = −
xZ

0
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dx .

Reference: J. Arrington, et al. Prog. Part. Nucl. Phys. 66 (2011) 782.
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Radiative corrections in coincidence experiments

X In general, magnitude of radiative corrections depends on the type of detector
(magnetic or not), detector geometry, its spatial and energy resolutions and the
kinematic cuts used in event selection. It is impossible to consider all this using
only single parameter ∆E . So we need to have an event generator and to conduct
Monte Carlo simulation of the detector.

X It is important also, that this approach allows us for bremsstrahlung replace
analytical integration over kinematic variables of electron, proton and photon on
numerical. And numerical integration allows us avoid the use of soft photon approximation
and other simplifications. We need an analytical integration only in the kinematic
region where photons are very soft (this is necessary to separate infrared divergent
terms).

X Another advantage is an opportunity to take into account such complex processes
as bremsstrahlung with the delta-isobar ∆(1232) excitation. We need to know only
the square of the amplitude of the process. Analytical integration is not required.
Modern computer algebra packages can be used for the calculation of amplitudes
(for example, Mathematica + FeynCalc).
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The ESEPP event generator

A new Monte Carlo event generator (`p → `′p′ Рё `p → `′p′γ), called ESEPP
(Elastic Scattering of Electrons and Positrons by Protons), has been developed. We
used the following formulas from the paper of Ent et al., which is the development
of Mo & Tsai approach applied to coincidence experiments:

dσelast
dΩ`

+
dσbrem
dΩ`

∣∣∣∣∣
Eγ<Ecut

γ

=
(
1 + δvirt + δbrem

) dσRos
dΩ`

,

δvirt = δ`vac + δvert, δbrem = δ``brem ± δ
`p
brem + δpp

brem,

δ`vac =
2α

π

(
−5

9
+

1

3
ln

Q2

m2

)
,

δvert =
α

π

(
3

2
ln

Q2

m2
− 2

)
,

δ``brem = −2α
[
B̃
(
`, `,E cut

γ

)
− 2B̃

(
`, `′,E cut

γ

)
+ B̃

(
`′, `′,E cut

γ

)]
,

δ`pbrem = 4α
[
B̃
(
`, p,E cut

γ

)
− B̃

(
`, p′,E cut

γ

)
− B̃

(
`′, p,E cut

γ

)
+ B̃

(
`′, p′,E cut

γ

)]
,

δpp
brem = −2α

[
B̃
(
p, p,E cut

γ

)
− 2B̃

(
p, p′,E cut

γ

)
+ B̃

(
p′, p′,E cut

γ

)]
.

Reference: R. Ent, et al., Phys. Rev. C 64 (2001) 054610.
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The ESEPP event generator

Events of two different types are generated: “elastic” (with Eγ < E cut
γ = 1÷10 MeV)

and inelastic (three particles in the final states). To generate inelastic events we use
either the formula (soft photon approximation)

dσbrem
dΩ` d3k

=
−α

4π2Eγ

[
± `

k · `
−± `′

k · `′
+

p

k · p
− p′

k · p′

]2
dσRos
dΩ`

,

or expression (by V. S. Fadin and A. L. Feldman)

dσbrem
dEγ dΩγ dΩ`

=
1

(2π)5

1

32I

EγE
′
`∣∣M + E`(1− cos θ`)− Eγ(1− cosψ)

∣∣ |Mbrem|2,

where
I =

√
(`p)2 −m2M2 ≈ ME`.
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Lepton bremsstrahlung calculation

M`
brem =

e6

q4
1

(
L1µν + L2µν

)
Pµν ,

where

L1µν =
1

2
tr
[(
/̀
′

+ m
)
γα
/̀
′

+ /k + m

2(k · `′)
γµ
(
/̀+ m

)
γα
/̀− /k + m

2(k · `)
γν

]
−

− 1

2
tr
[(
/̀
′

+ m
)
γα
/̀
′

+ /k + m

2(k · `′)
γµ
(
/̀+ m

)
γν
/̀
′

+ /k + m

2(k · `′)
γα

]
,

Pµν =
1

2
tr
[(
/p + M

){(
F1(q1) + F2(q1)

)
γν − F2(q1)

2M
Pν
}

(
/p
′ + M

){(
F1(q1) + F2(q1)

)
γµ − F2(q1)

2M
Pµ
}]
,

and expression for the tensor L2µν is obtained from the expression for L1µν after
the substitution `↔ −`′.
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Some examples of events generated

htemp
Entries  2518354
Mean    56.32
RMS     10.99

theta_l*180/pi
50 60 70 80 90

0

20

40

60

80

100

120

140

310×
htemp

Entries  2518354
Mean    56.32
RMS     10.99

theta_l*180/pi htemp
Entries  2518354
Mean    9.733
RMS     21.95

theta_g*180/pi
0 20 40 60 80 100 120 140 160 180

10

210

310

410

510

610

htemp
Entries  2518354
Mean    9.733
RMS     21.95

theta_g*180/pi

Alexander Gramolin (Budker INP) OLYMPUS Symposium PNPI, July 10, 2012 14 / 20



Impact on Rosenbluth separation

σred
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ε
0 0.2 0.4 0.6 0.8 1

re
d

σ 3
10

65

70

75

80

85

90

95

 = 1 MeVcut
γ, E2 = 1.1 GeV2

cut
, W2 = 1 GeV2Q

Rosenbluth plot

Monte Carlo, SPA

Monte Carlo, FF

 = 1 MeVcut
γ, E2 = 1.1 GeV2

cut
, W2 = 1 GeV2Q

Alexander Gramolin (Budker INP) OLYMPUS Symposium PNPI, July 10, 2012 15 / 20



Impact on Rosenbluth separation
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Comparison between the SPA, FF and FG models

), degreeφ∆ = θ∆Cut on angular correlation (
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The ratio RMC as a result of geometric MC simulation. Kinematics: LA, run I.
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Ratio R and RC depend both on the kinematic cuts used

Raw data for the ratio R: Radiatively corrected ratio R:
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Experimentally measured ratio R is shown before (left figure) and after (right figure)
taking into account the radiative corrections (FF model). Red markers correspond
to the cut ∆θ = ∆φ = 3◦ on the angular correlations, blue markers correspond to
the cut ∆θ = ∆φ = 6◦ (data for LA range of the run II).
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Preliminary results of the Novosibirsk experiment
Run I (2009): Run II (2011–2012):
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Theory: P.G. Blunden, et al., Phys. Rev. C 72 (2005) 034612

Only statistical errors are shown. Systematic errors for both the runs: 6 0.3%

Note that the radiative corrections have been taken into account. Some minor
corrections have not yet been made (for example, corrections related to the variation
in time of beam energy and position).
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Conclusion and acknowledgements

XThe procedure for accounting of radiative corrections in the experiment was
designed, the ESEPP event generator was written, Geant4 simulation of the
detector was carried out.
XTo account for the first-order bremsstrahlung the soft-photon approximation was
used, as well as the more accurate calculation provided by V. S. Fadin and
A. L. Feldman.
XThe effect of this clarification on the Rosenbluth separation was studied.
XThe first calculation (by V. S. Fadin and R. E. Gerasimov) of first-order
bremsstrahlung with the delta-isobar excitation was used.
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fruitful discussions.
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